WHITE PAPER

Industry

Solutions Reference Architecture

intel

Red Hat* OpenShift Container Platform 4.9 for Network Function
Containerization Infrastructure

A reference architecture for Red Hat* OpenShift Container Platform running on 3rd Gen
Intel® Xeon® Scalable processors with Intel® next generation Network Adapter that provides
a guaranteed base level performance for real world Containerized Network Functions

Authors
Timothy Miskell
Ai Bee Lim

Shivapriya Hiremath

Red Hat* Reviewers
Bertrand Rault
Paul Lancaster
William Caban

Laney Badulis

1 Executive Summary

Over the past few decades the network transformation has been happening at a rapid
rate with network functions moving from fixed function towards virtualized functions
and recently the industry trends are pushing for another transformation into
Containerized Network Functions (CNFs) for large scale cloud deployment fueled by the
5G services roll out to millions of subscribers.

Intel® and Red Hat* co-developed this high-performance reference architecture using
Red Hat* OpenShift Container Platform 4.9 on 3rd Generation Intel® Xeon® Scalable
processors Platform with Intel® Ethernet Network Adapter E810, in this case specifically
E810-2C-QDA2. This combination enables the deployment of performant and low-
latency container-based networking workloads onto different footprints, such as bare
metal, virtual, private cloud, public cloud, or a combination of these, in either a
centralized data centric location or at the network edge.

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

Table of Contents

1 Executive Summary 1
2 Solution Brief 4
2.1 Business Challenge 4
2.2 Solution Value 4
2.3 Solution Architecture Highlights 4
2.4 A Closer Look at Red Hat* OpenShift Container Platform 5
2.4.1 OpenShift Marketplace 6
2.5 Example Use Case 6
2.6 Learn More 6
3 Implementation Guide 6
3.1 Introduction 6
3.2 Key Technologies 6
3.2.1 3rd Gen Intel® Xeon® Scalable Processors 6
3.2.2 Intel® Ethernet Products 6
3.2.3 Intel® Network Adapter with DPDK* 7
3.2.4 Dynamic Device Personalization 7
3.2.5 Intel® QAT 7
33 Red Hat* OpenShift Container Platform Reference Design 8
3.4 Security 9
3.4.1 Side Channel Mitigation 9
4 NFV Performance Requirements 9
4.1 Performance Baseline Requirement 11
411 Cyclictest 11
4.1.2 Memory Latency Checker — Reference Only 12
4.1.3 Jitter — Reference Only 12
4.1.4 Intel® QAT cpa_sample_code 12
4.1.5 OpenSSL Speed Benchmark 13
4.2 Packet Processing Performance 13
4.3 VPP*-IPSec for Secure Transport 13
4.3.1 Overview 13
432 TestSetup 13
4.3.3 TestResults 14
4.4 NGINX* Application for Web Proxy Applications 15
4.41 Overview 15
442 TestSetup 15
4.43 Test Results 16
Appendix A Installation Steps and Scripts 17
A BIOS Settings 17
A2 OS Configuration 18
A3 Red Hat* OpenShift Container Platform Configuration 18
A4 VPP* |PSec Container Deployment 18
A5 SR-I0V Network Operator Configuration 18
A.6 Container Image 19
A7 Pod Configuration 20
A8 NGINX* Container Deployment 20
A.8.1 SR-IOV Network Operator Configuration 20
A.8.2 Container Image 22
A.8.3 Pod Configuration 23
A9 Bare-Metal Installation 23
A.9.1 User-Provisioned Infrastructure Configuration 23
A.10 Creating the OpenShift Manifest and Ignition Configuration Files 25
A1 Creating Red Hat* Enterprise Linux CoreOS Nodes 25
A2 Installing a Bare-Metal Red Hat* OpenShift Container Platform 25
Figures
Figure 1. The Red Hat* OpenShift Container Platform is Optimized for Intel® Technologies.
Figure 2. Red Hat* OpenShift Container Platform Helps Communication Service Providers Develop, Deploy, and Manage Innovative

Applications at Scale.

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.

SDN and NFV Workloads Per Network Location Deployment

Red Hat* OpenShift 4.9 Deployment Overview
Red Hat* OpenShift 4.9 Network Topology Overview

Test Setup - VPP*-IPSec for Secure Transport

Test Results - IPSec Aggregate Throughput

Test Setup - NGINX* Application for Web Proxy Applications

Test Results — Aggregate HTTP Throughput

Required Hardware Bill of Materials

10
10
11
14
15
16
16

Network Switches

© 0

Firmware Versions (All Required)
Software Bill of Materials

©

Cyclic Test Performance Requirements

Memory Latency Checker Local and Remote NUMA Performance Requirements

Memory Latency Checker Peak Injection Memory Bandwidth Requirements

Intel® Quick Assist Technology® CPA Sample Code Performance Requirements

Intel® Quick Assist Technology® OpenSSL Speed Benchmark Requirements

DPDK* L3 Forwarding RFC2544 Performance Requirements
VPP* Device Under Test Configuration

NGINX* Device Under Test Configuration
System BIOS Settings for Compute/Worker/Storage Nodes

Advanced BIOS Settings.

Minimum Resource Requirements for Red Hat* OpenShift Container Platform 4.9 Nodes
Firewall Port Configuration Requirements

11

12
12
13
13
14
16
17
17
18
24

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

2 Solution Brief

2.1 Business Challenge

The amount of data that traverse through the network kept increasing fueled by COVID pandemic, the rising trend in high-definition
content delivery streaming services and immersive gaming user experience. On top of that, the industry currently is rolling out 5G
solutions to provide higher throughput with lower latency to enable more use cases for user rich experience on consumption of
these services. The demand on network infrastructures continues to be pressured over the course of this change. In order to stay
agile and competitive, communication service providers need to look at economics of cloud approach to offer network services in
order to keep up with the growing demand.

Investment needs to be made towards an infrastructure that will allow ability to develop applications and deploy services quickly
from data center to the cloud, all the way to the edge of the network so that services are closer to the user. Intel® and Red Hat*
defined a better together solution that will address this business challenge.

2.2 Solution Value

Business transformation requires automation, containers, and a modern infrastructure. That's exactly what communication service
providers obtain when they deploy Intel’s reference architecture for Red Hat* OpenShift Container Platform 4.9 for hybrid-multi
cloud, or network cloud workloads. With this reference architecture, communication service providers can move to a modern,
cloud-native infrastructure that meets today's demands and staying agile. Here are a few of the benefits of this solution:

e Take advantage of a validated, yet customizable design. Whatever the workload, this verified design helps organizations deploy
data center infrastructure quickly and efficiently with less tuning—potentially reducing total costs and speeding time to
deployment.

e Accelerate and simplify application development. Modern applications have a lot of moving parts, and there are many different
concepts developers need to be aware of. This complexity can slow down innovation. OperatorHub is an easy-to-use catalog of
operators (a method of packaging, deploying, and managing a Kubernetes-native application) from the Kubernetes community
and Red Hat* partners.

e Easily scale your workloads. The combination of Red Hat* OpenShift Container Platform, Red Hat* OpenShift Data Foundation,
OperatorHub, and Intel® technology makes it easy to scale a variety of workloads. These include databases, event streaming,
video streaming, telecommunications service provider operations, data analytics, Al, and machine learning. The modular nature
of the architecture enables developers to quickly add capacity, expand clusters, and extend capabilities.

e Meet growing storage and network needs. As the amount of data explodes in every industry, storing, managing and moving that
data becomes increasingly challenging. Intel® Optane™ SSDs with OpenShift Data Foundation can store metadata and/or act as
data cache to accelerate storage systems based on SATA and NAND SSDs. It can also help eliminate the storage penalty typical
of infrastructures that use low-cost, high-capacity drives. Moving of the data is critical in order to provide high network
throughput as part of the infrastructure.

2.3 Solution Architecture Highlights

This reference architecture delivers a turnkey, end-to-end solution using the latest Intel® platform technologies (see Figure 1) to
deliver a production-ready foundation. The solution simplifies network cloud deployment at all network locations, adopt the latest
best practices, and provides a stable, highly available infrastructure for running deployed services and applications. It also helps to
provision and deploy a highly available OpenShift Container Platform 4.9 cluster either on-premises or in a hybrid cloud, i.e. multi-
vendor and/or integrated near and far edge deployments, with both the registry and the application pods backed by OpenShift Data
Foundation. The solution is powered by highly scalable 3rd Gen Intel® Xeon® Scalable processors and supported by Intel® Optane™
technology, Intel® Ethernet networking products and Intel® QuickAssist Technologies (Intel® QAT) acceleration technologies.

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

intel® oneApl Intel® Distribution of IBM Cloud Pak
il OpenVINO™ Toolkit L

Red Hat OpensShift Red Hat OpenShift
Data Foundation Container Platform

Red Hat Enterprise
Linux CoreQS

= | = | O | D

Physical VM Public Cloud Private Cloud
Validated Server Hardware for All Infrastructures

3rd Gen Intel® Xeon® NVMe-based Intel® Optane™ Intel® Ethernet
Scalable Processor MNAND S5Ds S50z Products

Figure 1. The Red Hat* OpenShift Container Platform is Optimized for Intel® Technologies.
2.4 A Closer Look at Red Hat* OpenShift Container Platform

OpenShift Container Platform provides a consistent and security-enabled Kubernetes cloud-native, hybrid-multi cloud experience
(see Figure 2). It accommodates a large, scalable mix of microservices-oriented applications and their dependent components.
OpenShift Container Platform uses the Container Runtime Interface-Open Container Initiative engine and Kubernetes-based
orchestration. It provides container-as-a-service (CaaS) and platform-as-a-service (PaaS) workflows for developers and existing
applications. OpenShift Container Platform provide high-performance, scalable infrastructure for various workload and use-cases.
The following sections describe a few notable components of the overall platform.

Advanced Cluster Management

Multi-Cluster Management
Discovery | Policy | Compliance | Configuration | Workloads

Red Hat OpenShift Container Platform

Build Cloud-Native Developer

Manage Workloads Apps Productivity

Platform Services Application Services Developer Services
Service Mesh, Serverless, Databases, Languages, Developer, VS Code
; Runtimes, Integration,
Full Stack Logging Business Automation,
Chargeback 100+ ISV Services

Red Hat OpenShift Kubernetes Engine

Cluster Services
Automated Ops, Over-The-Air Updates, Monitoring, Registry,
Networking, Router, KubeVirt, OLM, Helm

T Red Hat Enterprise Linux
and RHEL CoreOS

O Any Infrastructure I Lﬂ

Public Cloud .-n.'_ C 1 rl I-I d .L Private Cloud
— L=
Physical VM

Edge Managed Cloud

Figure 2. Red Hat* OpenShift Container Platform Helps Communication Service Providers Develop, Deploy, and Manage
Innovative Applications at Scale.

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure
2.4.1 OpenShift Marketplace

Developers and Kubernetes administrators can use Red Hat* Marketplace to gain automation advantages while enabling the
portability of the services across Kubernetes environments. Developers can choose operators for a wide variety of tasks, including
Al and machine learning, databases, integration and delivery, logging and tracing, monitoring, networking, security, storage, and
streaming and messaging. Once installed on a cluster, operators are listed in the OpenShift Container Platform Developer Catalog,
providing a self-service experience. Developers do not need to be an expert in applications but ease of install the operators needed
to accomplish goals of the application or services. As a result, developers can spend more time in solving critical business needs
and less on installing and maintaining the underlying infrastructures.

2.5 Example Use Case

As mentioned earlier, this reference architecture is targeted for a network cloud workload specifically communication service
provider operations like Network Functions Virtualization (NFV).

2.6 Learn More

You may also find the following resources useful:
« 3rd Gen Intel® Xeon® Scalable processors
« Intel® Optane™ SSDs

« Intel® Ethernet products
« Red Hat* OpenShift Container Platform

Find the solution that is right for your organization. Contact your Intel® representative.

3 Implementation Guide

3.1 Introduction

The previous pages discussed the business value of using Intel® technology with OpenShift Container Platform, along with a high-
level look at the technologies used in the solution. In this section, more detail is provided about those technologies, the seismic
interpretation use case, and the steps required to run the use case experiment.

3.2 Key Technologies

3.2.1 3rd Gen Intel® Xeon® Scalable Processors

Intel’s latest processors for data center workloads are 3rd Gen Intel® Xeon® Scalable processors. They are packed with
performance- and security-enhancing features, including the following:

e Enhanced per-core performance, with up to 40 cores in a standard socket

e Enhanced memory performance with support for up to 3200 MT/s DIMMs (2 DIMMs per channel)
e Database compression with Intel® Vector Byte Manipulation Instructions

e Increased memory capacity with up to eight channels

e Support for Intel® Optane™ PMem 200 series

e Built-in Al acceleration with enhanced performance of Intel® Deep Learning Boost

e Faster inter-node connections with three Intel® Ultra Path Interconnect links at 11.2 GT/s

e More, faster I/O with PCl Express 4 and up to 64 lanes (per socket) at 16 GT/s

¢ Hardware-enhanced security of Intel® Crypto Acceleration

3rd Gen Intel® Xeon® Scalable processors offer new hardware-enhanced security features:

e Intel® Platform Firmware Resilience uses an Intel® FPGA to help protect, detect, and correct platform firmware.

e Intel® Secure Hash Algorithm (SHA) Extensions are designed to improve the performance of SHA-1 and SHA-256 on Intel®
processors.

e Total Memory Encryption provides full memory encryption to help protect against physical attack.

3.2.2 Intel® Ethernet Products

Intel® Ethernet products are the foundation for server and appliance connectivity. They provide broad interoperability, critical
performance optimizations, and increased agility for communications, cloud, and enterprise IT network solutions. Intel® provides
data centers worldwide with innovative Ethernet components and solutions that are extensively tested for network interoperability,

https://marketplace.redhat.com/en-us
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet.html
https://access.redhat.com/products/red-hat-openshift-container-platform
https://www.intel.com/content/www/us/en/newsroom/news/3rd-gen-xeon-scalable-processors.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions-implementations.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet.html

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

reliability, and performance. Intel® Ethernet controllers, adapters, and accessories deliver speeds from 1 to 100 GbE—with versatile
capabilities to optimize workload performance.

Intel” Ethernet 800 Series offers:

¢ Higher Bandwidth as Intel's first NIC with PCle* 4.0 and 50Gb PAM4 SerDes

¢ Improved Application Efficiency with Application Device Queues (ADQ), Dynamic Device Personalization (DDP)
e Versatility with Flexible speeds: 2x100/50/25/10GbE, 4x25/10GbE, or 8x10GbE

¢ RDMA support for both iWARP and RoCEv2 providing a choice in hyper-converged networks

3.2.3 Intel® Network Adapter with DPDK*

Intel® networking products deliver continuous innovation for high throughput and performance for networking infrastructure. Intel®
Network Adapter with DPDK* provides highly optimized network virtualization and fast data path packet processing. DPDK*
supports many performance-sensitive telecommunications use cases running on this implementation.

3.2.4 Dynamic Device Personalization

By complementing 2nd Gen Intel® Xeon® Scalable processors with Intel® SSDs and Intel® Ethernet 700 Series Network Adapters, this
reference implementation can help enterprises address storage bottlenecks and better utilize CPU resources. 10, 25, 40, and 100
GbE options can be deployed where necessary to help provide balanced system performance that scales well and delivers low
latency.

The ability to reconfigure network controllers for different network functions on-demand, without the need for migrating all VMs
from the server, avoids unnecessary loss of compute for VMs during server cold restart. It also improves packet processing
performance for applications/VMs by adding the capability to process new protocols in the network controller at run time.

This kind of on-demand reconfiguration is offered by Intel® Ethernet 700 Series’ Dynamic Device Personalization capability. This
capability in the Intel® Ethernet 700 Series devices to load an additional firmware profile on top of the device's default firmware
image, to enable parsing and classification of additional specified packet types so these packet types can be distributed to specific
queues on the NIC's host interface using standard filters. Software applies these custom profiles in a non-permanent, transaction-
like mode, so that the original network controller's configuration is restored after NIC reset or by rolling back profile changes by
software. Using APIs provided by drivers, personality profiles can be applied by the DPDK*. Support for kernel drivers and
integration with higher level management/orchestration tools is in progress.

Dynamic Device Personalization can be used to optimize packet processing performance for different network functions, native or
running in virtual environment. By applying a Dynamic Device Personalization profile to the network controller, the following use
cases could be addressed:
¢ New packet classification types (flow types) for offloading packet classification to network controller:

— New IP protocols in addition to TCP/UDP/SCTP (examples include IP ESP and IP AH)

— New UDP protocols, such as MPLSoUDP and QUIC

— New TCP subtypes, like TCP SYN-no-ACK

— New tunneling protocols like PPPoE and GTP-C/GTP-U
e New packet types for packet identification; these are reported on the packet's RX descriptor:

— IPv6, GTP-U, IPv4, UDP, PAY4

— IPv4, GTP-U, IPv6, UDP, PAY4

— IPv4, GTP-U, PAY4

— IPv6, GTP-C, PAY4

— MPLS, MPLS, IPv6, TCP, PAY4

3.2.5 Intel® QAT

Intel® QuickAssist Technology (Intel® QAT) consists of a hardware accelerator to offload lookaside cryptographic and
compression/decompression co-processing services. These services are accessible using Intel® QAT-related APIs that communicate
via PCI configuration space access and associated rings stored in system memory. These features require an out-of-tree driver
provided by Intel®, and all Intel® QAT functionality is directly supported by Intel®.

3.2.5.1 Cryptographic Functions
e Cipher operations:
— Advanced Encryption Standard
— Data Encryption Standard/Triple DES (3DES/TDES)
- RC4
e Hash operations:
- SHA-1,MD5

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

— SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
— SHA-3
- ZucC
e Authentication operation:
— HMAC, AES-XCBC, AES-CCM, AES-GCM, AES-XTS
e Cipher-Hash Combined Operation
e Key Derivation Operation
e Wireless Cryptography:
— KASUMI, SNOW 3G, ZUC

3.2.5.2 Public Key Functions

e RSA Operation

e Diffie-Hellman Operation

e Digital Signature Standard Operation

e Key Derivation Operation

e Elliptic Curve Cryptography: ECDSA and ECDH

3.2.53
e Deflate

Compression/Decompression Functions

3.3 Red Hat* OpenShift Container Platform Reference Design

Tables 1- 4 provide a guide for assessing conformance to Intel’s reference architecture for OpenShift Container Platform (both the
master node and worker node configurations). It is expected that all required resources to implement a software-defined
infrastructure reside within each server instance. For a system to conform to the reference architecture, all requirements in these
tables must be satisfied, with the exception of Table 2, which provides an alternative deployment option (not referenced in the rest
of this document) for use cases that benefit from external data nodes, separate from the Compute/Worker nodes. Table 2 provides
a Base design; a Plus design is also available. For a system to conform to the reference architecture, all requirements in these tables

must be satisfied.

Table 1. Required Hardware Bill of Materials

Ingredient Master Node Worker Node Base Worker Node Plus Storage Base Node Storage Plus Node

Requirement Requirement Requirement (Capacity Optimized) (Performance
Optimized)

cPU Intel” Xeon’ Gold Intel” Xeon' Gold Intel” Xeon® Gold Intel” Xeon® Gold Intel” Xeon’ Gold
5318N CPU 5318N CPU 6338N CPU 6330N CPU 6338N CPU
20c 2.0GHz 135W 24c 2.1GHz 150W 32c 2.2GHz 185W 28c 2.2GHz 165W 32c 2.2GHz 185W
(SST-PP Config 2)

Memor 256GB - Required 256GB - Required 512GB - Required 256GB - Required 256GB - Required

y

™

Intel® Optane
PMEM

Not Required

Not Required

Recommended

SSD for Metadata,
Caching

PMEM for Metadata,
Caching

NIC

2x Intel® Ethernet

2x Intel® Ethernet

2x Intel® Ethernet

2x Intel® Ethernet

2x Intel® Ethernet

Network Adapter Network Adapter Network Adapter Network Adapter Network Adapter
E810-CQDA2 E810-CQDA20or E810- E810-CQDA2 or E810-CQDAZ2 or E810-CQDAZ2 or
or E810-XXVDA2 XXVDA2 E810-2CQDA2 E810-XXVDA2 E810-XXVDA2

LOM Required Required Required Required Required
Recommended Required Required Recommended Recommended

Intel® QAT

s for B Recommended Recommended Recommended Required Required

At°’?ge forBoot ,, 40TB 2 x 4.0TB Intel’ D7- 4x 4.0TB Intel' D7- 8x 16TB 6 x 4.0TB Intel’ D7-

Spp ication Intel’ D7-P5510 P5510 P5510 Intel’ P5316 QLC P5510

torage NAND
Table 2. Network Switches

Hardware Recommendation

1x Cisco Nexus3000 C3232C Chassis (Nexus 9000 Series), NXOS: version 9.2(1) Required

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

Table 3. Firmware Versions (All Required)

Ingredient Version

BIOS SE5C6200.86B.0020.P34.2107301450
3rd Gen Intel® Xeon® Scalable processor platforms 0xd0002e0

BMC 2.85.a963ale7

Intel® Ethernet Network Adapter E810 2.30

Table 4. Software Bill of Materials

Software Version Recommendation
Red Hat* OpenShift Container Platform 4.9 Required
HAProxy* 2.2.15 Recommended
Dnsmasqg* 2.79 Recommended
NGINX* 1.20 Required

VPP* 22.02 Required

Intel® QAT 1.7.1.4.10.0-00014 Recommended
DPDK* 21.11 Required
SR-I0OV Network Operator 4.9.0-202202211206 Required

Node Feature Discovery 4.9.0-202202211131 Recommended

3.4 Security

This reference architecture must implement and enable Intel® Boot Guard Technology to ensure that the firmware is verified in the
boot phase. This makes it possible to establish the hardware root of trust. With UEFI Secure Boot Methodology, the secure boot can
be extended into the OS and further extend the chain of trust into loading of signed kernel modules.

Alternatively, all Intel® architecture-based solutions recommend installing the TPM, which enables administrators to secure
platforms for a trusted (measured) boot with known trustworthy (measured) firmware and OS. The TPM also enables local and
remote attestation by third parties to advertise such known good conditions (assuming the presence of Intel® Trusted Execution
Technology).

3.4.1 Side Channel Mitigation

This reference architecture has been verified for Spectre and Meltdown exposure using Spectre and Meltdown Mitigation Detection
Tool v0.42, which verifies that firmware and OS updates protect against known attacks:
e Spectre Variant 1

e Spectre Variant 2

e Spectre Variant 3

e Spectre Variant 3a

e Spectre Variant 4

e Foreshadow (SGX)

e L1 terminal fault

e Foreshadow-NG (OS)

e Foreshadow-NG (VMM)

e MDS
e ZombielLoad v2
e TAA

e No eXcuses
e iTLB multihit
e MCEPSC

4 NFV Performance Requirements

This section provides information necessary to verify the performance metrics for the Intel® Reference Implementation for Cloud-
Native Hybrid-Multicloud and SDN/NFV Built Using Red Hat* OpenShift Container Platform, to ensure that there are no anomalies.
The current Base and Plus solutions were tested with specific hardware and software configurations.?’ For performance baseline
and performance verification, the Turbo enabled with C-states enabled settings are used to gather data for maximum performance
configuration.

DPDK?* is a core platform technology component for Master Node, Base Worker Node, and Plus Worker Node configurations. As
such, it is expected that a compliant system must implement the DPDK* software and meet performance metrics. Figure below
illustrates SDN and NFV workload examples across all network locations, including centralize sites, regional points of presence

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

(PoPs), remote central offices (COs), access COs, or customer premises. Each network location has different network throughput
requirements as well as thermal and power conditions. Intel® provides platform architecture solutions that span all levels of
network location deployment with the same consistent Intel® architecture software investment.

A A A

[viw] VRAN | [vBNG
vSecGW | vOLT/DSL [VEPCS/P GW

MEC UPF

| CMTS
e

{ dupfF |

MEC
[cMTs |
/ [ppijvePE |
. CDN

On Premises Edge) Access Edge Remote CO Regional DC Telco Data Center
(Ent Edge) (Far Edge) (Near Edge) (Regional POP) Core Network

T m@@@

Figure 3. SDN and NFV Workloads Per Network Location Deployment

Distributed Continuous Integration node to automate deployment of RHOCP in cluster mode

Provisioning node to deploy RHOCP onto and act as a front end for the master and worker nodes

Master node as part of a 3 node HA cluster that acts a controller

Master node as part of a 3 node HA cluster that acts a controller

Master node as part of a 3 node HA cluster that acts a controller

Worker node where CNFs are deployed

1 For further information regarding DCI, refer to: https://doc.distributed-ci.io

Figure 4. Red Hat* OpenShift 4.9 Deployment Overview

10

https://doc.distributed-ci.io/

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

Provisioning Network MGMT/BMC/Baremetal Network Data Plane Network
172.16.1.0/24 10.10.10.0/24 172.16.1.0/24

RN DCI Node VR
e o | [] T4 D
()
~— |] ///,/

Master Node 1

Ll

Master Node 2

Ll

Master Node 3

Worker Node 1

Figure 5. Red Hat* OpenShift 4.9 Network Topology Overview

4.1 Performance Baseline Requirement

There are a few applications that are required to be executed once the system has been configured per the bill of materials, BIOS
configuration, Intel® Advanced Technology configuration, and software stack configuration. The output of these applications
provides a performance baseline on the system'’s expected latency performance, memory bandwidth, and jitter. If the latency
performance and memory bandwidth performance are outside the range as tabulated above, revisit the Cluster Configuration (A.2,
A.3)section to verify the validity of system components, BIOS settings, and software components.

4.1.1 Cyclictest

This reference implementation must demonstrate the NFVI system latency for the wake-up time of the threads running in the
container as specified in Table 1- 4. To validate conformance to this requirement, benchmarking must be performed using the
cyclictest application running in a container. Appendix E.3 in 639782 provides information on running the cyclictest application.

Table 5. Cyclic Test Performance Requirements

Cyclictest Performance in Latency 1CPU 8 CPUs
(Executed Inside the Container)

Minimum <5 ps <10 ps
Average <10 ps <15 ps

3A real-time kernel is available from Red Hat* for any workload that requires strict low latency and deterministic behavior.

11

https://cdrdv2.intel.com/v1/dl/getContent/639782

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure
4.1.2 Memory Latency Checker - Reference Only

The Memory Latency Checker (MLC) is also required (Table 5 and Table 6). Download the latest version and execute the application,
unzip the tarball package, and go into the Linux folder and execute ./mlc or ./mlc_avx512.

Table 6. Memory Latency Checker Local and Remote NUMA Performance Requirements

3rd Generation Intel® Xeon® Scalable Processor

Memory Latency Checker Local NUMA Node Remote NUMA Node
Idle Latency 75 ns 130 ns
Memory Bandwidth Between Nodes within the System 55000 149000

Using read-only traffic type

Table 7. Memory Latency Checker Peak Injection Memory Bandwidth Requirements

3rd Generation Intel® Xeon® Scalable Processor

Peak Injection Memory Bandwidth Using All Threads Base Configuration Plus Configuration
Peak Injection Memory Bandwidth (1 MB/s)
Using All Threads

All Reads 290000 290000
3:1 Reads-Writes 260000 260000
2:1 Reads-Writes 250000 250000
1:1 Reads-Writes 220000 220000
Stream-Triad-Like 250000 260000
Loaded Latencies Using Read-only Traffic Type with Delay=0 210 270
L2-L2 HIT Latency 50 50
L2-L2 HITM Latency 50 50
Remote Socket L2-L2 HITM Latency 110 110
Data Address on Writer Socket

Remote Socket L2-L2 HITM Latency 115 130

Data Address on Reader Socket

4.1.3 Jitter — Reference Only

The jitter application measures the variability of latency in the execution of a user space dummy loop with a dummy operation. Use
the following steps to download the tool, build, and execute the tool, targeting an idle core:

1. git clone https://gerrit.fd.io/r/pma tools
2. cd pma tools/jitter
3. make

4. ./jitter -c 2 -i 200

In the output, review the Inst_Jitter column; this should range from 5K to 100K if Max Performance Profile with Turbo Mode is
enabled. When using Deterministic Performance in a BIOS setting, the jitter should not exceed 10K.

4.1.4 Intel® QAT cpa_sample_code

The Intel® QAT cpa_sample_code should be executed to ensure that the Intel® QAT functionality is tested to the expected
performance (Table 17). This test is not required for the Controller Node.

Table 8. Intel® Quick Assist Technology® CPA Sample Code Performance Requirements

Intel® QAT Compression® Encryption® RSA2048¢ PCle*
cpa_sample_code Width
Base Worker Node Configuration

Intel® C626 Chipset 24 Gb/s 40 Gb/s 100 K/Ops x16
Intel® QAT 8970 (PCle*) AIC or Equivalent Third-Party Intel® C626 Series Chipset 34 Gb/s 40 Gb/s 100 K/Ops x8

Intel® QAT-enabled PCle* AIC

Plus Worker Node Configuration

Intel® C627 Chipset 54 Gb/s 100 Gb/s 100 K/Ops x16

Intel® C628 Chipset 54 Gb/s 100 Gb/s 100 K/Ops x16

2 Performance to be measured at 8 KB packet size
b Performance to be measured at 4 KB packet size
¢ Performance to be measured at 2 KB packet size

12

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure
4.1.5 OpenSSL Speed Benchmark

The OpenSSL speed benchmark should be executed to perform Bulk Encryption with AES128-CBC HMAC-SHA1 and Public Key
Exchange with RSA2048. Verify that the expected results are as shown in Table 9 to obtain a baseline for the performance of the
system. This test is not required for the Master Node. Refer to Section 5.1.2 in 639782 for an example of verification information.

Table 9. Intel® Quick Assist Technology® OpenSSL Speed Benchmark Requirements

OpenSSL Speed Benchmark AES128-CBCHMAC-SHA1*® RSA2048 (1 Core)
OpenSSL Benchmark

Intel® QAT Intel® QAT Software
Base Configuration 40 Gbps 100 K sign/s 1 Ksign/s
Plus Configuration 100 Gbps 100 K sign/s 1 K sign/s

aPerformance to be measured at 16 KB packet size
4.2 Packet Processing Performance

Systems compliant with this reference implementation must demonstrate a minimum packet processing performance as specified
in Table 10, implementing DPDK* to optimize packet processing performance. To validate conformance to the packet processing
performance requirements, benchmarking must be performed using the DPDK* L3 Forwarding application.

The RFC2544, Benchmarking Methodology for Network Interconnect Devices Zero Packet Loss test case, is used to validate
conformance. This test is used to determine the target platform throughput as defined in RFC1242, Benchmarking Terminology for
Network Interconnection Devices. For this requirement, the RFC2544 test case uses DPDK* L3 Forwarding application (see Appendix
F.2 in 639782) as the test application. Refer to Appendix F.2 in 639782 and the Benchmarking Methodology for Network
Interconnect Devices, RFC2544, and Benchmarking Methodology for Network Interconnect Devices, RFC1242.

This reference implementation requires that the following KPIs be collected to ensure that these network use cases are meeting the
expected performance.

e SR-IOV Function DPDK* application

e SR-IOV Function CNI application

e Topology manager for Kubernetes

Table 10. DPDK* L3 Forwarding RFC2544 Performance Requirements

Network KPIs Test Cases Packet Rate
Line Rate with Packet Size 256B

25 Gbps NIC PF Pass-through 90%

SRIOV DPDK* APP 90%

SRIOV CNI APP 90%
2x 25 Gbps NIC PF Pass-through 90%

SRIOV DPDK* APP 90%

SRIOV CNI APP 90%

4.3 VPP*-IPSec for Secure Transport

4.3.1 Overview

The Vector Packet Processor (VPP*) application is a production grade virtual Switch (vSwitch) that leverages the Data Plane
Development Kit (DPDK*) in order to scale performance across queues and cores, and supports deployment in baremetal,
virtualized as Virtual Network Function (VNF), and containerized environments as a Containerized Network Function (CNF). Internet
Protocol Security (IPSec) is a means to create an encrypted L3 tunnel between two endpoints over an insecure channel. VPP*
provides the ability to create IPSec tunnel, and offers support for a variety of engines to perform symmetric encryption and
authentication either through software or hardware, including native support, OpenSSL, the Intel® IPSec Multi-Buffer Library, along
with Quick Assist Technology (QAT) hardware. Furthermore, IPSec supports multiple ciphers including for example AES-128-CBC
SHA1-HMAC as well as AES-128-GCM, which can be preconfigured statically or dynamically between two endpoints. VPP* IPSec is
typically leveraged for Firewall or VPN applications deployed on Network Function Virtualization Infrastructure (NFVI).

4.3.2 Test Setup

The figure below illustrates how the VPP* CNFs are deployed onto a Worker Node Plus Configuration. The benchmarks focus on
single socket performance on 3rd Generation Intel® Xeon® Scalable Processors. In this case, two VPP* containers are deployed per
socket, specifically VPP* Endpoint O (VPP* EPO) and VPP* Endpoint 1 (VPP* EP1). Each VPP* container is allocated a pair of 100 GbE
Virtual Functions (VFs) from a single Physical Function (PF). For the forward flow sent to VPP* EPO, the first VF receives cleartext

13

https://cdrdv2.intel.com/v1/dl/getContent/639782
https://cdrdv2.intel.com/v1/dl/getContent/639782
https://cdrdv2.intel.com/v1/dl/getContent/639782

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

traffic from the traffic generator, in this case Pktgen, VPP* encrypts the traffic with the corresponding cipher and afterwards sends
the encrypted packets to the other VF. Similarly, for VPP* EP1, the first VF receives encrypted traffic, VPP* decrypts the traffic with
the corresponding cipher and afterwards sends the clear text traffic to the other VF. The flow in the reverse direction performs the
same operations in reverse order.

The benchmarks compare VPP* IPSec aggregate throughput performance for two engines, as well as for two ciphers. In particular
we compare the VPP* with and without Intel® IPSec Multi-buffer library support, as well as the AES-128-CBC-SHA-1 along with the
AES-128-GCM ciphers. Furthermore, Pktgen is configured to send at the maximum possible rate, and the benchmarks measure the
Maximum Receiver Rate (MRR) of the end-to-end network.

Traffic Generator

Socket 0 Socket 0 Socket 1

VPP EPO | | VPP EP1
Pktgen

VF1: ethl VF1: ethl VF1: eth2

E810-2C-QDA2 E810-2C-QDA2 E810-2C-QDA2 E810-2C-QDA2
E810-C-QDA2 E810-C-QDA2

ewmso | feeoo |

InanpRan

Cisco Nexus 100 Gbps Switch

Legend
Clear Text (100 Gbps)

Encrypted (100 Gbps)

Figure 6. Test Setup - VPP*-IPSec for Secure Transport

Table 11. VPP* Device Under Test Configuration

Component DUT Configuration

NICs 4x E810-2C-QDA2 (2x E810-2CQDA2 / Socket)

VFs 2x VFs allocated to each VPP* container

VPP* iavf PMD CPUs 9T

VPP* vCPUs 10C/20T allocated to each VPP* container (1C/2T Control Plane, 9C/18T Data Plane, 9T per VF)
Idle Cores/Threads 44C/88T

RXQs/TXQs per VF 9/9

Traffic Generator Pktgen (200 Gbps TX / Socket, 200 Gbps TX / Server)

Traffic Profile Maximum Receiver Rate, Clear text IPv4+TCP (16 Flows sent to each VPP* container)

https://www.intel.com/content/www/us/en/products/details/servers/server-systems/server-system-m50cyp.html

4.3.3 Test Results

The figure below displays the aggregate throughput for VPP* IPSec with the AES-128-GCM cipher, with the native VPP* crypto
handler for a variety of packet sizes ranging from 64 B up to 1450 B. In this case, performance scales up to approximately 187.5
Gbps with the native crypto handler for a 1450 B packet size. In addition, performance scales up to approximately 40.9 MPPS with
the native crypto handler for a 64 B packet size.

14

https://www.intel.com/content/www/us/en/products/details/servers/server-systems/server-system-m50cyp.html

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

VPP 22.02 IPSec Aggregate Throughput
Cipher: AES-GCM-128, Crypto Engine: native
RXD: 512, RXD: 512, Turbo Disabled

mmmm 1C27 Mbps s 2CAT Mbps 4C8T Mbps 8C16T Mbps 9C18T Mbps
= @= 1C2T MPPS 2C4T MPPS 4C8T MPPS 8C16T MPPS 9C18T MPPS
200,000 187,597 s50.0
180,000 45.0
g 160,000 40.9 395 375 147,184 40.0
S 140,000 : 131,412 35.0
% 120,000 30.9 30.0
2 100,000 82,215 25.0
Eo 80,000 20.0
S 60,000 46,824 15.0
40,000 10.0
20,000 ~ _27_487_ i [- ! _.l i = _J d 5.0
0 ' - 0.0
64 1024 1450

Packet Size (B)

Figure 7. Test Results - IPSec Aggregate Throughput
4.4 NGINX* Application for Web Proxy Applications

4.41 Overview

NGINX* is an open source, production grade origin HTTP/HTTPS web server and Content Delivery Network (CDN) web caching
application. NGINX* is designed to be orchestrated and deployed at scale, for example as Virtual Machines running in a Red Hat*
OpenStack environment, or as containers running in a Red Hat* OpenShift environment. In addition, NGINX*, which supports the

Linux TCP/IP stack, supports SR-IOV either as a VNF or CNF via the kernel driver.
4.4.2 TestSetup

Throughput (MPPS)

The test environment consists of a Device Under Test (DUT) with 4x NGINX* CNFs deployed on a single socket. Each NGINX* origin
web server container includes 1x 100 GbE VF, with each VF created from a unique PF. Each NGINX* container reserves 15 threads

for a total of 60 threads consumed for the given socket. To ensure that the system is not client bound, 3x traffic generators are

included, each with the ability to generate up to 200 Gbps of HTTP requests. The benchmarking tool leveraged in this case is

Vegeta, a software based HTTP/HTTPS client, which is deployed baremetal onto each of the traffic generators.

For the purposes of the benchmarks, the Vegeta clients are started simultaneously and each target at most 2x NGINX* origin web
servers. For each iteration of the benchmark, the Vegeta clients target a specific object size ranging from 1KiB up to 10 MiB, and
also target a specific throughput rate in terms of transactions per second (TPS) ranging from the default of 50 TPS up to 51,200

TPS. For each iteration, the KPI of interest is the achieved aggregate throughput in terms of both TPS and Gbps.

15

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

_
E810-C-QDA2 EB10-C-QDA2 E810-C-QDA2 E810-C-QDA2 E810-C-QDA2 E810-C-QDA2
| _

e

Cisco Nexus 100 Gbps Switch

Figure 8. Test Setup - NGINX* Application for Web Proxy Applications

Table 12. NGINX* Device Under Test Configuration

Component DUT Configuration

NICs 4x E810-2C-QDA2 (2x E810-2C-QDA2 / Socket)
NGINX* Instances 4 [Socket (4 total)

SR-IOV 4x 100 Gbps VFs (1x VF per CNF, 1x VF / PF)

vCPUs 15T per NGINX* CNF (30C/60T total)

Idle Cores/Threads 34C/68T

NGINX* Client Vegeta (100 Gbps TX / Socket, 200 Gbps TX / Server)
Object Sizes (KiB) 1, 64,128, 256, 1024, 4096, 8192, 10240

4.4.3 Test Results

The figure below presents the aggregate throughput across all Vegeta clients in terms of Transactions Per Second (TPS). In general,
the achievable throughput in TPS decreases as the object size increases. In this case, the aggregate throughput reaches up to
approximately 204,423 TPS for a 1 KiB object size.

Aggregate HTTP Throughput
RHOCP 4.9.25, Nginx Web Server 1.20
4x Nginx Containers, 1x VF per Container, 1x VF per PF
Duration: 300s, Keepalive: True, 3x Vegeta Clients

W 200 TPS m 400 TPS m 800 TPS m1600TPS m3200TPS m 6400 TPS
12800 TPS m 25600 TPS 51200 TPS © 102400 TPS = 204800 TPS

., 250

g 204.42

T 200
<3
2 <
§ F 150
=3
(8]
3 100 75.07
g ~ 60.73
S
[50 33i21

9.42 2.48 1.12 0.93
0 J— J— J— J—— J—— — S
1 64 128 256 1024 4096 8192 10240
Object Size (KiB)

Figure 9. Test Results — Aggregate HTTP Throughput

16

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

Appendix A Installation Steps and Scripts

A1

BIOS Settings

Table A1 provides BIOS settings that are applicable to Compute/Worker/Storage nodes; Table 2 provides detailed settings for BIOS

configurations that maximize deterministic performance.

Table 13. System BIOS Settings for Compute/Worker/Storage Nodes

Ingredient Setting Recommendation
Intel® Hyper Threading Technology Enabled Required

CPU Power/Performance Policy Performance Required

CPU Workload Configuration Balanced Recommended
Intel® Turbo Boost Technology Enabled Recommended
Intel® Speed Shift technology HWP native Recommended
Intel® Turbo Boost Technology/Hardware P-State energy performance EPP/EPB settings balanced Recommended
preference

Three-way mirroring With the least overhead on processing Recommended

power

Table 14. Advanced BIOS Settings.

Note:

Use either column with deterministic performance or Turbo mode enabled in this table to gather performance data required

for conformance. Some solutions may not provide the BIOS options as documented in this table. Therefore, for this

reference architecture, the BIOS should be set to “Max Performance” profile with Virtualization.

Menu (Advanced) Path to BIOS Setting BIOS Setting Recommendation
Socket Configuration Processor Configuration Hyper-Threading Enable
X2APIC Enable
VMX Enable
Uncore frequency scaling Enable
Uncore frequency 800MHz to 2.4GHz
CPU P State Control EIST PSD Function HW_ALL
Boot Performance Mode Max. Performance
AVX License Pre-Grant Disable
AVX ICCP Pre Grant Level NA
AVX P1 Nominal
Energy Efficient Turbo Enable
GPSS timer Ous
Turbo Enable
Intel” SpeedStep’(Pstates) Technology Enable
Frequency Prioritization RAPL Prioritization Disable

Hardware PM State Control

Hardware P-States

Native with no Legacy Support

EPP enable Disable

CPU C State Control Enable Monitor Mwait Enable
CPU C1 Auto Demotion Enable
CPU C1 Auto unDemotion Enable
Processor C6 or CPU C6 Report Enable
Enhanced Halt State (C1E) Enable
OS ACPI Cx ACPI C2

Energy Performance Bias Power Performance Tuning OS Controls EPB
Workload Configuration Balanced

Package C State Control

Package C State

C6 Non Retention

Dynamic L1

Enable

Memory Configuration

Memory Configuration

8-way interleave

Enforce POR

Enable

Memory DIMM Refresh Rate 2X
Platform Configuration Miscellaneous Configuration Serial Debug Message Level Minimum
PCI Express* Configuration PCle* ASPM Support Per Port
PCI Express* Configuration PCle* ASPM Disable
PCl Express* Configuration ECRC generation and checking Enable
Server Management Resume on AC Power Loss Power On
System Acoustic and Performance Configuration Set Fan Profile Performance

17

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure
A.2 OS Configuration

The Bastion node and infrastructure node must use Red Hat* Enterprise Linux (RHEL) 8.4 as the OS. RHEL requires an enabled Red
Hat* subscription to run properly.

The Bootstrap, Control Plane, and Compute nodes must use the Red Hat* Enterprise Linux CoreQS (RHCQOS) as the OS. RHCOS
settings can be modified only in a limited manner. This controlled immutability allows OpenShift Container Platform to store the
latest state of RHCOS systems in the cluster, so it is always able to create additional nodes and perform updates based on the latest
RHCOS configuration.

A3 Red Hat* OpenShift Container Platform Configuration

Installing OpenShift Container Platform requires, at a minimum, the following nodes:

e One Bastion mode. Used to provision the bootstrap node. The Bastion node is used later to manage the cluster while itis in
production use. It hosts the PXE, DHCP, DNS, and HTTP servers.

¢ Infrastructure node(s). For enterprise-level, high-availability deployment of Red Hat* OpenShift Container Platform 4.9, it is
recommended to have at least two enterprise-level, commercially supported L4 load balancers, such as those available
from NGINX*, F5, or Avi Networks.

¢ One Bootstrap node. Used to deploy OpenShift Container Platform. The Bootstrap node can be reinstalled to become a
Compute node after the cluster is installed.

e Three Control Plane nodes. Used to manage the Worker nodes and the Kubernetes pods in the cluster.

e At least two Compute (or worker) nodes. Worker nodes can be added to or deleted from a cluster if doing so does not
compromise the viability of the cluster. At least two viable Worker nodes must always be operating.

Table 15 shows the minimum resource requirements. Installing OpenShift Container Platform with OpenShift Data Foundation
requires at least three Storage nodes. Storage can be either provisioned from dedicated nodes or shared with compute services.
These nodes can be added later, after cluster deployment.

For more information about OpenShift Container Platform installation, see OpenShift Container Platform 4.9 Documentation. For
recommended and validated hardware configuration, see the earlier Implementation Guide section.

Table 15. Minimum Resource Requirements for Red Hat* OpenShift Container Platform 4.9 Nodes

Node oS Minimum CPU Cores RAM Storage 10PS
DCI Node Red Hat* Enterprise Linux 8.4 4 32GB 180 GB 300
Provisioning Node Red Hat* Enterprise Linux 8.4 4 16 GB 100 GB 300
Bootstrap VM Red Hat* Enterprise Linux CoreOS 4 16 GB 100 GB 300
Master Node Red Hat* Enterprise Linux CoreOS 4 16 GB 100 GB 300
Worker Node Red Hat* Enterprise Linux CoreOS 2 8 GB 100 GB 300

A.4 VPP* IPSec Container Deployment
The following section provides additional details on how to deploy VPP* IPSec as a CNF on RHOCP 4.9.

A.5 SR-IOV Network Operator Configuration

Install the SR-IOV Network Operator through the OpenShift Ul by navigating to “OperatorHub” under the “Operators” section.
Within the “Filter by keyword” dialog box enter “SR-IOV Network Operator”. Select the “SR-IOV Network Operator” and click the
“Install” button.

Once installed a SriovNetworkNodePolicy will need to be created in order to create and bind Virtual Functions (VFs) on each of the
worker nodes. From the OpenShift Ul navigate to “Installed Operators” under the “Operators” section. From the project filter drop
down box select “All Projects” and click on the “SR-IOV Network Operator”. Confirm the SR-IOV configuration status on each of the
worker nodes in the cluster by clicking on the “Sriov Network Node State” tab. Select each worker node and click on the “YAML"
tab. From the YAML, review the list of available interfaces, the current driver loaded for each interface, and confirm that the field
“totalvfs” for each of the corresponding interfaces is non-zero. In this case, create one Virtual Function per Physical Function, each
bound to the vfio-pci driver. Navigate to the “Details” tab for the SR-IOV Network Operator and click on the “Create Instance”
button under the “Sriov Network Node Policy” section. In the “Form view” enter the following set of details for each VF. As an
example to create a VF from PF ens785:

e Name: ens785-vf
e Nic Selector
— PfNames
= Value: ens785

18

https://docs.openshift.com/container-platform/4.6/installing/installing_bare_metal/installing-bare-metal.html

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

e Resource Name: vppepOclearvf
e Device Type: vfio-pci

e Num Vfs: 1

e Mtu:9000

All remaining fields can be left at their default value assignments. Once finished click the “Create” button. From the “Details” tab
click on the “Sriov Network Node State” section and confirm the SriovNetworkNodeState status on the corresponding PF to ensure
that the each of the VF groups was successfully created.

As an example:

spec:

dpConfigVersion: '1933744'
status:

interfaces:

- driver: ice
vendor: '8086'
name: ens785
linkSpeed: 100000 Mb/s
mtu: 1500
mac: '04:96:91:93:fc:48"'
deviceID: '1592'
linkType: ETH
pciAddress: '0000:4b:00.0"'
totalvfs: 256

- driver: ice
vendor: '8086"'
name: ens786
linkSpeed: 100000 Mb/s
mtu: 1500
mac: 'b4:96:91:93:fc:4c'
deviceID: '1592'
linkType: ETH
pciAddress: '0000:4e:00.0"
totalvfs: 256

Disable MAC spoof checking and enable trust mode on all of the VFs that have been created via an SriovNetwork custom resource
definition. Navigate to the “Details” tab on the SR-IOV Network Operator and click the “Create Instance” button under the “Sriov
Network” section. From the “Form view" enter the following set of details for each VF. As an example, to customize the VF from PF
ens785:

e Name: vppepOclearvfcrd
e Resource Name: vppepOclearvf
e Trust: on

e Spoof Chk off
Once completed click the “Create” button.
A.6 Container Image

To build the VPP* container image, create the following Dockerfile:
FROM ubuntu:20.04

RUN apt-get update && apt-get install -y --no-install-recommends \

apt-transport-https \
ca-certificates \
curl \
gnupg \
iproute2 \
iputils-ping \

&& rm -rf /var/lib/apt/lists/*

ARG REPO
ARG VPP _VERSION

WORKDIR /vpp

COPY get-vpp.sh /get-vpp.sh

RUN set -eux; \
/get-vpp.sh; \

apt-get update && apt-get install -y -V ./*.deb; \
dpkg-query -f '${Version}\n' -W vpp > /vpp/version; \

19

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

rm -rf vom*.deb vpp-dbg*.deb; \
rm -rf /var/lib/apt/lists/*;

RUN mkdir -p /var/log/vpp

RUN apt update

RUN apt-get -y install iproute2

RUN apt-get -y install python3

RUN apt-get -y install git

RUN apt-get -y install ethtool

RUN git clone http://dpdk.org/git/dpdk dpdk-21.11 && cd ./dpdk-21.11 && git checkout v21.11
CMD ["/usr/bin/vpp", "-c", "/etc/vpp/startup.conf"]

Once completed, from the OpenShift CLI run:

oc start-build --from-file=Dockerfile
A7 Pod Configuration

To launch each VPP* instance, create a YAML script that allocates 2x VFs along with 9C/18T. As an example, for VPP* endpoint O:
apiVersion: vl
kind: Pod
metadata:
name: vpp-ep0-app
labels:
app: vpp
namespace: default
spec:
securityContext:
allowPrivilegeEscalation: true
privileged: true
containers:
- name: vpp-ep0
image: 'image-registry.openshift-image-registry.svc:5000/default/<vpp-image-name>'
ports:
- containerPort: 8080
protocol: TCP
resources:
limits:
cpu: "18"
openshift.io/vppepOclearvf: "1"
openshift.io/vppepOencvf: "1"
requests:
cpu: "18"
openshift.io/vppepOclearvf: "1"
openshift.io/vppepOencvf: "1

A.8 NGINX* Container Deployment
The following section provides additional details on how to deploy NGINX* as a CNF on RHOCP 4.9.
A.8.1 SR-I0OV Network Operator Configuration

Install the SR-IOV Network Operator through the OpenShift Ul by navigating to “OperatorHub” under the “Operators” section.
Within the “Filter by keyword” dialog box enter “SR-IOV Network Operator”. Select the “SR-IOV Network Operator” and click the
“Install” button.

Once installed a SriovNetworkNodePolicy will need to be created in order to create and bind Virtual Functions (VFs) on each of the
worker nodes. From the OpenShift Ul navigate to “Installed Operators” under the “Operators” section. From the project filter drop
down box select “All Projects” and click on the “SR-IOV Network Operator”. Confirm the SR-IOV configuration status on each of the
worker nodes in the cluster by clicking on the “Sriov Network Node State” tab. Select each worker node and click on the “YAML"
tab. From the YAML, review the list of available interfaces, the current driver loaded for each interface, and confirm that the field
“totalvfs” for each of the corresponding interfaces is non-zero. In this case, create one Virtual Function per Physical Function, each
bound to the vfio-pci driver. Navigate to the “Details” tab for the SR-IOV Network Operator and click on the “Create Instance”
button under the “Sriov Network Node Policy” section. In the “Form view" enter the following set of details for each VF. As an
example to create a VF from PF ens785:

e Name: ens785-vf
e Nic Selector
— PfNames
= Value: ens785
e Resource Name: nginx1vf

e Device Type: netdevice
e Num Vfs: 1
e Mtu:9000

20

http://dpdk.org/git/dpdk%20dpdk-21.11%20&&%20cd%20./dpdk-21.11%20&&%20git%20checkout%20v21.11

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

All remaining fields can be left at their default value assignments. Once finished click the “Create” button. From the “Details” tab

click on the “Sriov Network Node State” section and confirm the SriovNetworkNodeState status on the corresponding PF to ensure

that the each of the VF groups was successfully created. As an example:

spec:

dpConfigVersion: '1933744'
status:

interfaces:

- driver: ice
vendor: '8086"'
name: ens785
linkSpeed: 100000 Mb/s
mtu: 1500
mac: 'b4:96:91:93:£fc:48"'
deviceID: '1592'
linkType: ETH
pciAddress: '0000:4b:00.0"'
totalvfs: 256

- driver: ice
vendor: '8086'
name: ens786
linkSpeed: 100000 Mb/s
mtu: 1500
mac: '04:96:91:93:fc:4c’
deviceID: '1592'
linkType: ETH
pciAddress: '0000:4e:00.0"
totalvfs: 256

Configure a static IP subnet for each of the VFs using IPAM. From the “Details” tab for the SR-IOV Network Operator, click on
“Create Instance” under the “Sriov Network” section. Enter the appropriate static IP subnet configuration settings under the IPAM
section. As an example YAML template for the network associated with the VF attached to interface ens785:

apiVersion: sriovnetwork.openshift.io/vl
kind: SriovNetwork
metadata:

annotations:

operator.sriovnetwork.openshift.io/last-network-namespace: default

resourceVersion: '4457791"'
name: ens785-vf-network
uid: 1clc9c2e-f£fc7-40£6-87b7-971d7bb6fcel
creationTimestamp: '2022-02-15T21:27:50Z"'
generation: 2
managedFields:
- apiVersion: sriovnetwork.openshift.io/vl
fieldsType: FieldsVl
fieldsVl:
'f:spec':
-2
'f:ipam': {}
'f:linkState': {}
'f:networkNamespace': {}
'f:resourceName': {}
'f:spoofChk': {}
'f:trust': {}
manager: Mozilla
operation: Update
time: '2022-02-15T21:27:50Z"'
- apiVersion: sriovnetwork.openshift.io/vl
fieldsType: FieldsV1l
fieldsVl:
'f:metadata':
'f:annotations':

{}

'f:operator.sriovnetwork.openshift.io/last-network-namespace':

'f:finalizers':
{}
'v:"netattdef.finalizers.sriovnetwork.openshift.io"': {}
manager: sriov-network-operator
operation: Update
time: '2022-02-15T21:27:502"'
namespace: openshift-sriov-network-operator
finalizers:
- netattdef.finalizers.sriovnetwork.openshift.io
spec:

{}

21

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

ipam: >-
{ "type": "host-local", "subnet": "172.16.4.0/24", T"rangeStart":
"172.16.4.2", "rangeEnd": "172.16.4.11", "routes": [{ "dst":
"0.0.0.0/0"™ }1, T"gateway": "172.16.4.1"}

linkState: auto
networkNamespace: default
resourceName: nginx dataplane
spoofChk: 'on'

trust: 'off'

Enable MAC spoof checking and disable trust mode on all of the VFs that have been created via an SriovNetwork custom resource
definition. Navigate to the “Details” tab on the SR-IOV Network Operator and click the “Create Instance” button under the “Sriov

Network” section. From the “Form view" enter the following set of details for each VF. As an example, to customize the VF from PF

ens785:

¢ Name: nginx1vfcrd

e Resource Name: nginx1vf
e Trust: off

e SpoofChk on
Once completed click the “Create” button.
A.8.2 Container Image

To build the NGINX* container image, create the following Dockerfile:
FROM registry.access.redhat.com/ubi8/ubi-init

ENV NAME=nginx \
NGINX VERSION=1.20 \
NGINX SHORT VER=120 \
VERSION=0

ENV SUMMARY="Platform for running nginx $NGINX VERSION or building nginx-based application" \
DESCRIPTION="Nginx is a web server and a reverse proxy server for HTTP, SMTP, POP3 and IMAP \
protocols, with a strong focus on high concurrency, performance and low memory usage. The container \
image provides a containerized packaging of the nginx $SNGINX VERSION daemon. The image can be used \
as a base image for other applications based on nginx $SNGINX VERSION web server. \

Nginx server image can be extended using source-to-image tool."

LABEL summary="${SUMMARY}" \
description="${DESCRIPTION}" \
io.k8s.description="${DESCRIPTION}" \
io.k8s.display-name="Nginx ${NGINX VERSION}" \
io.openshift.expose-services="8080:http" \
io.openshift.expose-services="8443:https" \
io.openshift.tags="builder, ${NAME}, ${NAME}-${NGINX SHORT VER}" \
com.redhat.component="${NAME}-$ {NGINX SHORT VER}-container" \
name="ubi8/${NAME}—${NGINX75HORT7VER}" \
version="1" \
com.redhat.license terms="https://www.redhat.com/en/about/red-hat-end-user-license-agreements#UBI"

maintainer="SoftwareCollections.org <sclorg@redhat.com>" \
help="For more information visit https://github.com/sclorg/${NAME}-container" \
usage="s2i build <SOURCE-REPOSITORY> ubi8/${NAME}—${NGINX_SHORT_VER}:latest <APP-NAME>"

ENV NGINX7CONFIGURATIONiPATH=${APPiROOT}/etC/nginX.d \
NGINX CONF_PATH=/etc/nginx/nginx.conf \
NGINX DEFAULT CONF_ PATH=${APP_ROOT}/etc/nginx.default.d \
NGINX CONTAINER SCRIPTS PATH=/usr/share/container-scripts/nginx \
NGINX APP ROOT=${APP_ROOT} \
NGINX LOG PATH=/var/log/nginx \
NGINX PERL MODULE PATH=${APP ROOT}/etc/perl

RUN yum -y install iproute
RUN yum -y install ethtool
RUN yum -y install pciutils

RUN yum -y module enable nginx:$NGINX VERSION && \
INSTALL PKGS="nss wrapper bind-utils gettext hostname nginx nginx-mod-stream nginx-mod-http-perl" &&

yum install -y --setopt=tsflags=nodocs SINSTALL PKGS && \
rpm -V SINSTALL PKGS && \
yum -y clean all --enablerepo='*"

CMD nginx -g "daemon off;"

Once completed, from the OpenShift CLI run:

22

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

oc start-build --from-file=Dockerfile

A.8.3 Pod Configuration

To launch each NGINX* instance, create a YAML script that allocates 1x VF along with 15T. As an example, for NGINX* instance 1:
apiVersion: vl
kind: Pod
metadata:
name: nginx-app
labels:
app: nginx
namespace: default
annotations:
k8s.vl.cni.cncf.io/networks: ens785-vf-network
spec:
securityContext:
allowPrivilegeEscalation: true
privileged: true

containers:
- name: nginxl
image: 'image-registry.openshift-image-registry.svc:5000/default/<nginx-image-name>'
ports:

- containerPort: 8080

protocol: TCP
resources:

limits:
cpu: "15"
openshift.io/nginxlvf: "1"

requests:
cpu: "15"
openshift.io/nginxlvf: "1"

A.9 Bare-Metal Installation

A.9.1 User-Provisioned Infrastructure Configuration

Before installing a OpenShift Container Platform cluster, the underlying infrastructure must be provided. Follow these steps, which
are essential to install OpenShift Container Platform:

1. Provide a static IP address configuration for each node in the cluster to establish a network connection between all nodes in
the cluster.

2. Configure load balancers. Here is an example configuration file for HAProxy*:
frontend openshift-api-server-onpreml
bind 172.30.4.111:6443
default backend openshift-api-server-onpreml
mode tcp
option tcplog
frontend machine-config-server-onpreml
bind 172.30.4.111:22623
default backend machine-config-server-onpreml
mode tcp
option tcplog
frontend ingress-http-onpreml
bind 172.30.4.111:80
default backend ingress-http-onpreml
mode tcp
option tcplog
frontend ingress-https-onpreml
bind 172.30.4.111:443
default backend ingress-https-onpreml
mode tcp
option tcplog
backend openshift-api-server-onpreml
balance source
mode tcp
server bootstrap 172.30.4.104:6443 check
server masterl 172.30.4.101:6443 check
server master2 172.30.4.102:6443 check
server master3 172.30.4.103:6443 check
backend machine-config-server-onpreml
balance source
mode tcp
server bootstrap 172.30.4.104:22623 check
server masterl 172.30.4.101:22623 check
server master2 172.30.4.102:22623 check

23

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

server master3 172.30.4.103:22623 check
backend ingress-http-onpreml

balance source

mode tcp

server masterl 172.30.4.101:80 check

server master2 172.30.4.102:80 check

server master3 172.30.4.103:80 check

server workerl 172.30.4.104:80 check

server worker2 172.30.4.105:80 check
backend ingress-https-onpreml

balance source

mode tcp

server masterl 172.30.

server master2 172.30.

server master3 172.30.

server workerl 172.30.

server worker2 172.30.

.101:443 check
.102:443 check
.103:443 check
.104:443 check
.105:443 check

B D DD

3. Provide a DNS configuration for each node in the cluster and required OpenShift DNS records. The example below shows the

configuration file for Dnsmasqg*:

main DNS entries for apps & infra - OpenShift-specific
address=/api.onpreml.ocp.public/api.onpreml.ocp.public/172.30.4.111
address=/api-int.onpreml.ocp.public/api-int.onpreml.ocp.public/172.30.4.111
address=/1b.onpreml.ocp.public/lb.onpreml.ocp.public/172.30.4.111
address=/etcd-0.onpreml.ocp.public/etcd-0.onpreml.ocp.public/172.30.4.101
address=/etcd-1.onpreml.ocp.public/etcd-1.onpreml.ocp.public/172.30.4.102
address=/etcd-2.onpreml.ocp.public/etcd-2.onpreml.ocp.public/172.30.4.103

srv-host= etcd-server-ssl. tcp.onpreml.ocp.public,etcd-0.onpreml.ocp.public,2380,0,10
srv-host= etcd-server-ssl. tcp.onpreml.ocp.public,etcd-1.onpreml.ocp.public,2380,0,10
srv-host= etcd-server-ssl. tcp.onpreml.ocp.public,etcd-2.onpreml.ocp.public,2380,0,10
DNS entries for OpenShift hosts
address=/masterl.onpreml.ocp.public/masterl.onpreml.ocp.public/172.30.4.101
address=/master2.onpreml.ocp.public/master2.onpreml.ocp.public/172.30.4.102
address=/master3.onpreml.ocp.public/master3.onpreml.ocp.public/172.30.4.103
address=/ocsl.onpreml.ocp.public/ocsl.onpreml.ocp.public/172.30.4.107
address=/ocs2.onpreml.ocp.public/ocs2.onpreml.ocp.public/172.30.4.108
address=/ocs3.onpreml.ocp.public/ocs3.onpreml.ocp.public/172.30.4.109
address=/workerl.onpreml.ocp.public/workerl.onpreml.ocp.public/172.30.4.104
address=/worker2.onpreml.ocp.public/worker2.onpreml.ocp.public/172.30.4.105

4. Configure the ports for your nodes and verify that the ports shown in the following table were opened:

Table 16. Firewall Port Configuration Requirements

All Nodes to All Nodes

Protocol Port Description
ICMP N/A Network reachability tests
9000-9999 Host-level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on
port 9099
TCP
10250-10259 The default ports that Kubernetes reserves
10256 openshift-sdn
4789 VXLAN and GENEVE
ubP 6081 VXLAN and GENEVE
9000-9999 Host-level services, including the node exporter on ports 9100-9101
TCP/UDP 30000-32767 Kubernetes NodePort

All Nodes to the Control Plane

Protocol Port Description

2379-2380 etcd server, peer, and metrics ports
TCP

6443 Kubernetes API

24

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

A.10 Creating the OpenShift Manifest and Ignition Configuration Files

1.

2.

3.

A.11

Red Hat* Enterprise Linux CoreOS-ready nodes must be provided before installing the OpenShift Container Platform cluster. The

Provide an install-config.yaml file. Here is an example file:

apivVersion: vl
baseDomain: example.com
compute:
- hyperthreading: Enabled
name: worker
replicas: 2
controlPlane:
hyperthreading: Enabled
name: onpreml
replicas: 3
metadata:
name: cluster
networking:
clusterNetworks:
- cidr: 10.128.0.0/14
hostPrefix: 23
networkType: OpenShiftSDN
serviceNetwork:
- 172.30.0.0/16
platform:
none: {}
fips: false
pullSecret: '{"auths": ..}'
sshKey: 'ssh-ed25519 AAAA..'

Next, generate the OpenShift manifests for the cluster:
$./openshift-install create manifests --dir=<installation directory>

Modify the <installation_directory>/manifests/cluster-scheduler-02-config.yml OpenShift manifest file to prevent pods from

being scheduled on the Control Plane nodes. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file
and locate the mastersSchedulable parameter. Set its value to False.

4. Then, generate the ignition configuration files:
$./openshift-install create ignition-configs --dir=<installation directory>

Creating Red Hat* Enterprise Linux CoreOS Nodes

Red Hat* Enterprise Linux CoreOS nodes can be created using ISO image or network PXE booting.

A.12

1.

Call the installer to check the cluster creation process:
$./openshift-install wait-for bootstrap-complete --dir=<installation directory> //

--log-level=info

Installing a Bare-Metal Red Hat* OpenShift Container Platform

To finish the installation process, all certificate signing requests must be approved.

After successful installation, the oc get nodes command should return a list of nodes that are ready to work:

$ oc get nodes

NAME
clusterl-2jlgr-master-0
clusterl-2jlgr-master-1
clusterl-2jlgr-master-2

STATUS
Ready
Ready
Ready

clusterl-2jlgr-worker-westeuropel-jjmkp
clusterl-2jlgr-worker-westeuropel-kwzr6
clusterl-2jlgr-worker-westeurope2-41rjg
clusterl-2jlgr-worker-westeurope2-z7pdt
clusterl-2jlgr-worker-westeurope2-mjmfd
clusterl-2jlgr-worker-westeurope2-zmf21l

ROLES
master
master
master
Ready
Ready
Ready
Ready
Ready
Ready

AGE
46m
46m
45m
worker
worker
worker
worker
worker
worker

VERSION

v1.18.3+6c42de8
v1.18.3+6c42de8
v1.18.3+6c42de8

24m v1.18.3+6c42de8
25m v1.18.3+6c42de8
25m v1.18.3+6c42de8
23m v1.18.3+6c42de8
24m v1.18.3+6c42de8
25m v1.18.3+6c42de8

25

https://docs.openshift.com/container-platform/4.9/installing/installing_bare_metal/installing-bare-metal.html
https://docs.openshift.com/container-platform/4.9/installing/installing_bare_metal/installing-bare-metal.html

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

SOLUTION BRIEF ENDNOTES

IMPLEMENTATION GUIDE ENDNOTES

26

Technology Guide | Red Hat* OpenShift Container Platform 4.9 for Network Function Containerization Infrastructure

intel

Notices & Disclaimers

Intel technologies may require enabled hardware, software, or service activation.
No product or component can be absolutely secure.

Your costs and results may vary.

© 2022 Intel Corporation. Intel, the Intel logo, Xeon, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

27

	1 0BExecutive Summary
	2 Solution Brief
	2.1 Business Challenge
	2.2 Solution Value
	2.3 Solution Architecture Highlights
	2.4 A Closer Look at Red Hat* OpenShift Container Platform
	2.4.1 OpenShift Marketplace

	2.5 Example Use Case
	2.6 Learn More

	3 Implementation Guide
	3.1 Introduction
	3.2 Key Technologies
	3.2.1 3rd Gen Intel® Xeon® Scalable Processors
	3.2.2 Intel® Ethernet Products
	3.2.3 Intel® Network Adapter with DPDK*
	3.2.4 Dynamic Device Personalization
	3.2.5 Intel® QAT
	3.2.5.1 Cryptographic Functions
	3.2.5.2 Public Key Functions
	3.2.5.3 Compression/Decompression Functions

	3.3 Red Hat* OpenShift Container Platform Reference Design
	3.4 Security
	3.4.1 Side Channel Mitigation

	4 NFV Performance Requirements
	4.1 Performance Baseline Requirement
	4.1.1 Cyclictest
	4.1.2 Memory Latency Checker – Reference Only
	4.1.3 Jitter – Reference Only
	4.1.4 Intel® QAT cpa_sample_code
	4.1.5 OpenSSL Speed Benchmark

	4.2 Packet Processing Performance
	4.3 VPP*-IPSec for Secure Transport
	4.3.1 Overview
	4.3.2 Test Setup
	4.3.3 Test Results

	4.4 NGINX* Application for Web Proxy Applications
	4.4.1 Overview
	4.4.2 Test Setup
	4.4.3 Test Results

	Appendix A Installation Steps and Scripts
	A.1 BIOS Settings
	A.2 OS Configuration
	A.3 Red Hat* OpenShift Container Platform Configuration
	A.4 VPP* IPSec Container Deployment
	A.5 SR-IOV Network Operator Configuration
	A.6 Container Image
	A.7 Pod Configuration
	A.8 NGINX* Container Deployment
	A.8.1 SR-IOV Network Operator Configuration
	A.8.2 Container Image
	A.8.3 Pod Configuration

	A.9 Bare-Metal Installation
	A.9.1 User-Provisioned Infrastructure Configuration

	A.10 Creating the OpenShift Manifest and Ignition Configuration Files
	A.11 Creating Red Hat* Enterprise Linux CoreOS Nodes
	A.12 Installing a Bare-Metal Red Hat* OpenShift Container Platform

