

Document Number: 827068-1.0

Multi-Workloads End-to-End QnA and
Object Detection Implementation on
Intel® Core™ Ultra Processors

Reference Implementation

July 2024

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
2 Document Number: 827068-1.0

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit
www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

No product or component can be absolutely secure.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development, that have
not been made commercially available to the public, i.e., announced, launched or shipped. They are not "commercial" names for products or
services and are not intended to function as trademarks.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://intel.com/

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 3

Contents
1.0 Introduction .. 5

1.1 Terminology ... 5

2.0 Architecture ... 7
2.1 Hardware Architecture .. 7
2.2 Software Architecture .. 7

3.0 Implementation ... 10
3.1 Install Operating System and Docker* .. 10
3.2 Install GPU and NPU Drivers .. 10
3.3 Build xPU Docker* Image .. 10
3.4 Build OpenVINO™ Notebooks Docker* Image ... 12
3.5 Run QnA Notebooks .. 13
3.6 Run Video Surveillance Analytics Notebooks .. 15

4.0 BOMs .. 16
4.1 Test Setup .. 16
4.2 Results ... 16

Figures
Figure 1. Hardware Components Diagram .. 7
Figure 2. Software Deployment Diagram ... 8
Figure 3. Software Sequence Diagram .. 9

Tables
Table 1. Terminology ... 5
Table 2. Hardware and Software BOMs .. 16

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
4 Document Number: 827068-1.0

Revision History

Date Revision Description

July 2024 1.0 Initial release.

§

Introduction

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 5

1.0 Introduction
With the increase of processing capability year over year as well as additional compute
accelerators like the Neural Processing Unit (NPU), a single system is now capable of
running multiple end-to-end workloads like QnA (Question and Answer), video
surveillance analytics, and retail applications. Intel® Core™ Ultra Processors have up to
14 CPU cores with 20 threads as well as additional 2 low-power efficient cores that can
be allocated to each of the workloads using containerization. The CPU is suitable for
low latency workloads, the integrated GPU (iGPU) is for high throughput tasks, and the
NPU is targeted for low power sustain workloads.

Other than for agile resource allocation, the containerization of the workloads is useful
to improve security by protecting the business-critical workloads. Customers expect the
workloads to have adequate resources to run smoothly while one workload cannot
access the information of the other workloads.

This paper introduces the concept of workload consolidation using containerized
solutions and the reference implementation for retail use cases that include QnA and
video surveillance analytics applications. The QnA workload includes Automatic Speech
Recognition (ASR), Large Language Model (LLM), and Text-to-speech (TTS) modules.
Whereas video surveillance analytics utilizes object detection as one of the
components.

1.1 Terminology

Table 1. Terminology

Term Description

ASR Automatic Speech Recognition

BKM Best Known Method

Cmd Command

CPU Central Processing Unit

DP DisplayPort

E-core Efficient-core

fps Frames per Second

GPU Graphics Processing Unit

HDMI High-Definition Multimedia Interface

Introduction

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
6 Document Number: 827068-1.0

Term Description

iGPU Integrated Graphics Processing Unit

INT4 Integer 4-bit

IP Internet Protocol

LLM Large Language Model

LPE-core Low Power Efficient-core

NPU Neural Processing Unit

OpenVINO™ Open Visual Inference and Neural network Optimization

OS Operating System

P-core Performance-core

PoE Power over Ethernet

POS Points of Sale

QnA Question and Answer

TTS Text to Speech

USB Universal Serial Bus

§

Architecture

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 7

2.0 Architecture
This section describes both the hardware and software architecture of both QnA and
video surveillance analytics applications running on a single Intel® Core™ Ultra
Processor. This includes the hardware components diagram as well as the software
deployment and sequence diagrams.

2.1 Hardware Architecture

Figure 1 shows the hardware architecture of both QnA and video surveillance analysis
implementation. The QnA application allows the users to ask questions through a
microphone and receive the audible answer from the speaker. Whereas for the video
surveillance, it takes input from one or multiple cameras and output the detected
objects on the monitor for further analysis. A system with Intel® Core™ Ultra Processor
can provide all of the required interfaces such as 3.5mm line-out + microphone,
Ethernet, USB, HDMI, and DP connectors. The cameras can be directly connected using
USB or through PoE switch using Ethernet connector.

Figure 1. Hardware Components Diagram

2.2 Software Architecture
For the deployment using containerization as shown in Figure 2, the workloads can be
run on top of Docker* using Ubuntu* as the Operating System (OS). In the retail
scenario where Points of Sale (POS) is an essential component, the POS can be run
directly on top of the host OS. Using such approach, we can limit the resources for the
workloads that run on the containers in favor of the critical applications like POS.

The first containerized application is QnA encapsulated inside a OpenVINO™ Toolkit
container. This application has LLM component that runs best on GPU. In this case, the
Docker* run command can pass the iGPU access inside the container. The other
components like ASR and TTS will run on CPU. Other than the iGPU, Docker* run

Architecture

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
8 Document Number: 827068-1.0

command also needs to pass the USB or Sound device to the application inside the
container to access the microphone and speaker.

The second containerized application is video surveillance analysis that is also
encapsulated inside a OpenVINO™ Toolkit container. This application performs sustain
real-time object detection that is best to run on NPU to get the low-power benefit of
the compute unit. Other than NPU, the Docker* run command also needs to pass the
USB or Ethernet device to the containerized application to access the cameras.

If both of the containerized workloads are web-based applications, the Docker* run
command can expose the port numbers. Therefore, the web browser running directly
on the host OS can manage the applications, and in the case of video surveillance
application, the object detection result can be displayed on to the monitor.

Figure 2. Software Deployment Diagram

Figure 3 This shows the three-application sequence diagram. Retail, QnA, and video
surveillance applications are running in parallel, whereas the ASR, LLM, and TTS
components in the QnA application are running sequentially. Therefore, the three
components are not utilizing the compute resources at the same time.

As for the memory consumption, it is recommended to load and warm up all of the
components to speed up the execution/inference time. This becomes critically
important as the same OpenVINO™ model can run on different compute units like CPU,
GPU, and NPU. Therefore, it requires initial model compilation to the target device,
which consumes time and compute resources.

To save memory for object detection with multiple camera implementation, it is
recommended to use batching inference instead of creating multiple models. For four
cameras, for example, a model can comply using [4,3,640,640] input shape instead of

Architecture

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 9

creating four models with [1,3,640,640] input shape, where 4 is the batch size, 3 is the
number of channels, and 640x640 is the image resolution.

Figure 3. Software Sequence Diagram

§

Implementation

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
10 Document Number: 827068-1.0

3.0 Implementation

This section provides the steps to install operating system and required drivers as well
as to build and run Docker* containers.

3.1 Install Operating System and Docker*

Download Ubuntu* Desktop 22.04 LTS and perform normal installation (not minimal
installation). Then, update the OS with the latest kernel version 6.5 and install Docker*
using Cmd 1.

Cmd 1. Command to Install Docker*
$ sudo snap install docker

3.2 Install GPU and NPU Drivers

Follow these links to install GPU and NPU version 1.5.0 drivers.

Run Cmd 2 to activate the GPU. Use this link to check your GPU device identification.
The example uses 7d55. Update accordingly then reboot the OS.

Cmd 2. Command to Activate GPU
$ sudo vim /etc/default/grub
GRUB_CMDLINE_LINUX="i915.force_probe=7d55"

$ sudo update-grub

3.3 Build xPU Docker* Image

xPU Docker* image consists of packages to access different processing units (iGPU and
NPU). Cmd 3 shows the Dockerfile and Cmd 4 shows the steps to build the image. Use
Cmd 5 to detect different compute units in the system.

Cmd 3. xPU Dockerfile
$ vim Dockerfile_xpu
FROM openvino/ubuntu22_dev:2023.3.0

Install Basics
USER root
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update -y \
 && apt-get upgrade -y

https://dgpu-docs.intel.com/driver/client/overview.html
https://github.com/intel/linux-npu-driver/releases/tag/v1.5.0
https://dgpu-docs.intel.com/devices/hardware-table.html

Implementation

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 11

RUN apt-get update -y \
 && apt-get install -y apt-utils git curl ca-certificates bzip2
unzip wget cmake pkg-config tree htop iotop g++ gcc libc6-dev
make sudo \
 && apt-get install -y libglib2.0-0 libsm6 libxext6 libxrender-
dev python3-dev python3-opencv ffmpeg \
 && apt-get install -y libtbb12 libtbbmalloc2 \
 && apt-get install -y gpg

Install GPU Packages
RUN wget -qO - https://repositories.intel.com/gpu/intel-
graphics.key | \
 gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
RUN echo "deb [arch=amd64,i386 signed-
by=/usr/share/keyrings/intel-graphics.gpg]
https://repositories.intel.com/gpu/ubuntu jammy client" | \
 tee /etc/apt/sources.list.d/intel-gpu-jammy.list
RUN apt-get update -y \
 && apt-get install -y \
 intel-opencl-icd intel-level-zero-gpu level-zero \
 intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
 libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-
dev libgl1-mesa-dri \
 libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12
libxatracker2 mesa-va-drivers \
 mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo
hwinfo clinfo

Install NPU Packages
RUN wget https://github.com/intel/linux-npu-
driver/releases/download/v1.5.0/intel-driver-compiler-
npu_1.5.0.20240619-9582784383_ubuntu22.04_amd64.deb
RUN dpkg -i intel-driver-compiler-npu_1.5.0.20240619-
9582784383_ubuntu22.04_amd64.deb
RUN wget https://github.com/intel/linux-npu-
driver/releases/download/v1.5.0/intel-fw-npu_1.5.0.20240619-
9582784383_ubuntu22.04_amd64.deb
RUN dpkg -i intel-fw-npu_1.5.0.20240619-
9582784383_ubuntu22.04_amd64.deb
RUN wget https://github.com/intel/linux-npu-
driver/releases/download/v1.5.0/intel-level-zero-
npu_1.5.0.20240619-9582784383_ubuntu22.04_amd64.deb
RUN dpkg -i intel-level-zero-npu_1.5.0.20240619-
9582784383_ubuntu22.04_amd64.deb

RUN apt-get remove -y level-zero
RUN wget https://github.com/oneapi-src/level-
zero/releases/download/v1.17.2/level-zero_1.17.2+u22.04_amd64.deb
RUN dpkg -i level-zero_1.17.2+u22.04_amd64.deb

Clean Workspace
RUN rm *.deb

Implementation

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
12 Document Number: 827068-1.0

Finalizing
USER openvino
WORKDIR /opt/intel/openvino

Cmd 4. Command to Build xPU Docker* Image
$ sudo docker build \
 -f Dockerfile_xpu \
 -t openvino/ubuntu22_dev_xpu:2023.3.0 .

$ sudo docker images
REPOSITORY TAG ... SIZE
openvino/ubuntu22_dev_xpu 2023.3.0 ... 5.87GB

Cmd 5. Command to Test xPU Docker* Image
$ sudo docker run -it \
 --device=/dev/dri/renderD128 \
 --device=/dev/accel/accel0 \
 --user root \
 --rm openvino/ubuntu22_dev_xpu:2023.3.0 \

"/opt/intel/openvino/samples/cpp/samples_bin/samples_bin/benchmar
k_app" "--help"

...
Available target devices: CPU GNA GPU NPU

3.4 Build OpenVINO™ Notebooks Docker* Image

Use the latest OpenVINO™ notebooks version 2024.2 to get more updated examples
but when running the notebooks, remove pip installation of the OpenVINO™ package.
Cmd 6 shows the Dockerfile and Cmd 7 shows the steps to build the Docker* image.

Cmd 6. OpenVINO™ Notebooks Dockerfile
$ sudo vim Dockerfile_xpu_nb
FROM openvino/ubuntu22_dev_xpu:2023.3.0

Install Basics
USER root
RUN pip3 install tensorflow==2.12
RUN pip3 install keras==2.12

Install OpenVINO Open Model Zoo
RUN wget
https://github.com/openvinotoolkit/open_model_zoo/archive/refs/ta
gs/2023.3.0.zip \
 && unzip 2023.3.0.zip \
 && mv open_model_zoo-2023.3.0 open_model_zoo
RUN pip3 install -r open_model_zoo/demos/requirements.txt

Implementation

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 13

Install OpenVINO Notebooks
RUN git clone -b 2024.2
https://github.com/openvinotoolkit/openvino_notebooks.git
WORKDIR /opt/intel/openvino
RUN python3 -m pip install --upgrade pip
RUN pip3 install wheel
RUN pip3 install jupyterlab ipywidgets "ipykernel>=5.0"
"ipython>=7.16.3" "setuptools<70"
RUN rm 2023.3.0.zip

Finalizing
USER openvino
WORKDIR /opt/intel/openvino

Cmd 7. Command to Build OpenVINO™ Notebooks Docker* Image
$ sudo docker build \
 -f Dockerfile_xpu_nb \
 -t openvino/ubuntu22_dev_xpu_nb:2023.3.0 .

$ sudo docker images
REPOSITORY TAG ... SIZE
openvino/ubuntu22_dev_xpu_nb 2023.3.0 ... 11.5GB
openvino/ubuntu22_dev_xpu 2023.3.0 ... 5.87GB

Since a container is stateless, create a directory to store the files permanently. In this
case, it is results directory. Any changes made in the container outside this directory
will be gone after restarting the container. Use Cmd 8 to run the notebooks container.
Then, open a web browser to access the notebooks using the provided IP address, port,
as well as the token. All notebooks are located inside openvino_notebooks directory.

Cmd 8. Command to Run OpenVINO™ Notebooks Docker* Image
$ mkdir results

$ sudo docker run -it \
 -p 8888:8888 \
 -v ./results:/opt/intel/openvino/results \
 --device=/dev/dri/renderD128 \
 --device=/dev/accel/accel0 \
 --user root \
 --rm openvino/ubuntu22_dev_xpu_nb:2023.3.0 \
 bash -c "jupyter lab --no-browser --allow-root --ip 0.0.0.0 --
port=8888"

3.5 Run QnA Notebooks

Quantizing LLM with 7 to 8 billion parameters to INT4 requires up to 64 GiB of memory.
Use Cmd 9 to increase the system memory using Swap file. Please note that the
example increases the memory to 128 GiB but the current Intel® Core™ Ultra Processors
support up to 96 GiB only.

Implementation

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
14 Document Number: 827068-1.0

Cmd 9. Command to Increase Memory Size using Swap File
$ free -m
 total ...
Mem: 63932 ...
Swap: 0 ...

$ sudo fallocate -l 64G /swapfile
$ sudo chmod 600 /swapfile
$ sudo mkswap /swapfile
Setting up swapspace version 1, size = 64 GiB (68719472640 bytes)
no label, UUID=4c2fcc31-5b73-4a34-97e3-d1b8056f66b6
$ sudo swapon /swapfile

$ free -m
 total ...
Mem: 63932 ...
Swap: 65535 ...

Use Cmd 10 to run QnA application using 12 CPUs and iGPU
(/dev/dri/renderD128). For microphone and speaker, please add USB
(/dev/bus/usb) or sound (/dev/snd) device accordingly.

Cmd 10. Command to Run QnA Notebooks
$ mkdir results

$ sudo docker run -it \
 --cpus="12.0" \
 -p 8887:8887 \
 -v ./results:/opt/intel/openvino/results \
 --device=/dev/dri/renderD128 \
 --device=/dev/accel/accel0 \
 --user root \
 --rm openvino/ubuntu22_dev_xpu_nb:2023.3.0 \
 bash -c "jupyter lab --no-browser --allow-root --ip 0.0.0.0 --
port=8887"

Followings are the sample notebooks for each of the components in QnA application.
As mentioned earlier, when running the notebooks, please remove OpenVINO™ from
the pip installation to have the consistent OpenVINO™ version as the one installed in
the Docker* image.

• ASR

o Automatic speech recognition using Distil-Whisper and OpenVINO™

o Video Subtitle Generation using Whisper and OpenVINO™

• LLM

o LLM Instruction-following pipeline with OpenVINO™

https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/distil-whisper-asr/distil-whisper-asr.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/whisper-subtitles-generation/whisper-subtitles-generation.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/llm-question-answering/llm-question-answering.ipynb

Implementation

 Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
July 2024 Reference Implementation
Document Number: 827068-1.0 15

• TTS

o Voice tone cloning with OpenVoice and OpenVINO™

o Text-to-speech Python* Demo

3.6 Run Video Surveillance Analytics Notebooks

For 4 cameras implementation, it is recommended to utilize 4 CPUs. One CPU can be
used for each camera pre and post-processing. Cmd 11 shows the command to run
video surveillance analytics application using 4 CPUs and NPU (/dev/accel/accel0).

Cmd 11. Command to Run Video Surveillance Analytics Notebooks
$ mkdir results

$ sudo docker run -it \
 --cpus="4.0" \
 -p 8886:8886 \
 -v ./results:/opt/intel/openvino/results \
 --device=/dev/dri/renderD128 \
 --device=/dev/accel/accel0 \
 --user root \
 --rm openvino/ubuntu22_dev_xpu_nb:2023.3.0 \
 bash -c "jupyter lab --no-browser --allow-root --ip 0.0.0.0 --
port=8886"

Following notebook can be used for video surveillance analytics application using
YOLOv8 model from Ultralytics*. For OpenVINO™ version 2023.3 LTS, please pip
install Ultralytics* package version 8.1.42 instead of 8.2.24.

• Object Detection

o Convert and Optimize YOLOv8 real-time object detection with
OpenVINO™

§

https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/openvoice/openvoice.ipynb
https://docs.openvino.ai/2024/omz_demos_text_to_speech_demo_python.html
https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/yolov8-optimization/yolov8-object-detection.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/2024.2/notebooks/yolov8-optimization/yolov8-object-detection.ipynb

BOMs

Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel® Core™ Ultra Processors
Reference Implementation July 2024
16 Document Number: 827068-1.0

4.0 BOMs

4.1 Test Setup

Table 2 lists both hardware and software BOMs for the implementation.

Table 2. Hardware and Software BOMs

Component Information

Processor Intel® Core™ Ultra 7 Processor 155H
6P+8E+2LPE-cores, 22 Threads
24 MB Intel® Smart Cache, up to 4.80 GHz

Memory 32 GiB LPDDR5
96 GiB Swap File

Storage 500 GiB SSD

Operating System Ubuntu* version 22.04 LTS, Kernel 6.5

Graphics Driver Version 24.13.29138.29

NPU Driver Version 1.5.0

Docker* Version 24.0.5

OpenVINO™ Toolkit Version 2023.3 LTS

OpenVINO™ Notebooks Version 2024.2

Ultralytics* Version 8.1.42

4.2 Results

This implementation is targeted for edge use cases. The QnA application can be run in
real time. The ASR and TSS can produce the results in one-third of the time whereas
the LLM (8 billion quantized parameters) takes less than one second to the first token
with subsequent 18 tokens/second. For English, one word comprises two to three
tokens. So, the LLM can produce between 6 and 9 English words per second.

Object detection using the YOLOv8n model requires about 100 milliseconds of latency
to infer 4 batch images from 4 input cameras. By utilizing asynchronous pre- and post-
processing together with model inference, the video surveillance analytics application
can handle 10 fps input from 4 cameras.

§

	Multi-Workloads End-to-End QnA and Object Detection Implementation on Intel Core Ultra Processors Reference Implementation
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Terminology

	2.0 Architecture
	2.1 Hardware Architecture
	2.2 Software Architecture

	3.0 Implementation
	3.1 Install Operating System and Docker*
	3.2 Install GPU and NPU Drivers
	3.3 Build xPU Docker* Image
	3.4 Build OpenVINO™ Notebooks Docker* Image
	3.5 Run QnA Notebooks
	3.6 Run Video Surveillance Analytics Notebooks

	4.0 BOMs
	4.1 Test Setup
	4.2 Results

