

Document number: 746745-1.0

Accelerating Object Detection Throughput in Cloud
and Edge Deployments by Optimizing YOLOv7 Model
using Intel® Distribution of OpenVINO™ Toolkit

White Paper

July 2023

Author:

Ramesh Perumal
Chun Jieh Sow
Muhammad Nasih Ulwan Abd Wahab
Hoay Tien Teoh

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
2 Document Number: 783469-1.0

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

http://www.intel.com/design/literature.htm

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 3

Contents

1.0 Introduction ... 5
1.1 Acronyms .. 6
1.2 Reference Documents .. 6

2.0 Model Optimization and Quantization .. 9
2.1 Prerequisites ... 9
2.2 Model Optimization .. 10
2.3 Model Quantization .. 15

3.0 Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7
Model .. 18
3.1 Use Case ... 18
3.2 Deploying Object Detection on AWS EC2 .. 18
3.3 Deploying Object Detection on iBOX-6305E .. 19
3.4 Performance Evaluation ... 19

4.0 Conclusion ... 22

5.0 Appendix A .. 23
5.1 Converting the Private Key from PEM into PPK Format ... 23
5.2 Connecting from Intel Network to AWS EC2 Instance ... 24
5.3 Transferring Files from Intel Network to AWS EC2 Instance 27

Tables
Table 1. Acronyms .. 6
Table 2. Reference Document ... 7
Table 3. Devices Under Test .. 8
Table 4. Performance of object detection with the optimized YOLOv7 model in DUT

 .. 20
Table 5. Estimated cost savings with the recommended AWS EC2 Instances based

on 3rd Gen Xeon CPU.. 20

Figures
Figure 1. Model Optimization Workflow ... 5
Figure 2. Detection Results of YOLOv7 Model in PyTorch Framework 10
Figure 3. Detection Results of the Optimized YOLOv7 Model with FP32 Precision 14
Figure 4. Detection Results of the Quantized YOLOv7 Model with INT8 Precision 17

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
4 Document Number: 783469-1.0

Revision History

Date Revision Description

July 2023 1.0 Initial release

§

Introduction

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 5

1.0 Introduction

This document presents the BKMs for optimizing and quantizing YOLOv7 model
using Intel® Distribution of OpenVINO™ Toolkit. The object detection use case based
on the optimized YOLOv7 model is evaluated on Intel platforms to demonstrate the
improved throughput. Furthermore, the potential cost savings by the optimized
model in cloud deployment is illustrated with the real-time use case of an ISV.

Figure 1. Model Optimization Workflow

The raw pre-trained model is converted into the optimized IR model using Model
Optimizer that implements most of the optimization parameters to a model by default.
It is further optimized by applying special optimization methods, such as
quantization, pruning, and preprocessing optimization. Starting from OpenVINOTM
2022.2.0, Neural Network Compression Framework (NNCF) becomes the
recommended tool for post-training and training-time optimization methods. Post-
training Quantization (or Post-training Optimization Tool (POT) in previous versions
of OpenVINOTM) is designed to accelerate the inference of models by converting
them into a more hardware-friendly representation (INT8) by applying specific
methods that do not require re-training. It is limited in terms of achievable accuracy-
performance trade-off for optimizing models. To overcome this, training-time
optimization may give better results with methods, like Quantization-aware Training
and Filter Pruning. This paper demonstrates the increased throughput of the object
detection use case with the quantized YOLOv7 model in INT8 precision using post-
training quantization.

Introduction

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
6 Document Number: 783469-1.0

1.1 Acronyms

Table 1. Acronyms

Term Description

BKM Best Known Method

OpenVINOTM Open Visual Inference & Neural Network Optimization

NNCF Neural Network Compression Framework

POT Post-training Optimization Tool

ISV Independent Software Vendor

DUT Device Under Test

8-bit Integer INT8

16-bit Floating Point FP16

32-bit Floating Point FP32

FPS Frames per second

1.2 Reference Documents

Log in to the Resource and Documentation Center (rdc.intel.com) to search and
download the document numbers listed in the following table. Contact your Intel
field representative for access.

Note: Third-party links are provided as a reference only. Intel does not control or audit
third-party benchmark data or the web sites referenced in this document. You should
visit the referenced web site and confirm whether the referenced data is accurate.

https://www.intel.com/content/www/us/en/design/resource-design-center.html

Introduction

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 7

Table 2. Reference Document

Document Document
No./Location

OpenVINOTM Toolkit https://software.seek.intel.com/openvino-toolkit

OpenVINOTM Docker Image https://hub.docker.com/r/openvino/ubuntu20_dev

YOLOv7 GitHub Repository https://github.com/WongKinYiu/yolov7

OpenVINOTM Notebook for
Optimization and Quantization
of YOLOv7 model

https://github.com/openvinotoolkit/openvino_noteb
ooks/blob/main/notebooks/226-yolov7-
optimization/226-yolov7-optimization.ipynb

Model Optimization Guide https://docs.openvino.ai/latest/openvino_docs_mod
el_optimization_guide.html

numactl https://manpages.ubuntu.com/manpages/trusty/ma
n8/numactl.8.html

taskset https://manpages.ubuntu.com/manpages/jammy/ma
n1/taskset.1.html

OpenVINOTM CPU plugin
properties

https://docs.openvino.ai/2023.0/openvino_doc
s_OV_UG_supported_plugins_CPU.html

AWS EC2 Xeon Instances https://aws.amazon.com/ec2/instance-
types/m6i/

AWS EC2 Pricing https://aws.amazon.com/emr/pricing/

PuTTY https://www.chiark.greenend.org.uk/~sgtatham/putty
/latest.html

WinSCP https://winscp.net/eng/index.php

https://software.seek.intel.com/openvino-toolkit
https://hub.docker.com/r/openvino/ubuntu20_dev
https://github.com/WongKinYiu/yolov7
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html
https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/emr/pricing/
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://winscp.net/eng/index.php

Introduction

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
8 Document Number: 783469-1.0

Table 3. Devices Under Test

DUT-1:
Core

Model NUC11TNHv5

CPU 11th Gen Intel® CoreTM i5-1145G7 x 8

GPU Intel® Iris® Xe Graphics

Memory 16 GB

OS Ubuntu 20.04 LTS

Docker 20.10.16

OpenVINOTM 2022.2.0

NNCF 2.4.0

DUT-2:
Celeron

Model iBOX-6305E

CPU Intel® Celeron® 6305E CPU x 2

GPU Intel® UHD Graphics

Memory 16 GB

OS Ubuntu 20.04 LTS

OpenVINOTM 2022.2.0

DUT-3:
3rd Gen
Xeon

CPU Intel® Xeon® Silver 4316 CPU x 80

Memory 256 GB

OS Ubuntu 20.04 LTS

OpenVINOTM 2022.2.0

DUT-4:
AWS EC2
(2nd Gen
Xeon)

Model c5.2xlarge

CPU Intel® Xeon® Platinum 8275CL CPU x 8

Memory 16 GB

OS Ubuntu 20.04 LTS

OpenVINOTM 2022.2.0

§

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 9

2.0 Model Optimization and Quantization

2.1 Prerequisites

a. Create a Python* virtual environment and upgrade the pip version in DUT-1

b. Clone the official YOLOv7 GitHub repository and install the dependencies

c. Install OpenVINO™ and NNCF for model optimization and quantization

d. Verify the object detection results of the pre-trained YOLOv7 model in PyTorch
format (yolov7.pt) using the existing script detect.py in the YOLOv7 repository

The inference time of the detection results shown in Figure 2 is 211 ms on CPU in
DUT-1.

python -m venv yolov7_venv
source yolov7_venv/bin/activate
python -m pip install --upgrade pip

git clone https://github.com/WongKinYiu/yolov7.git
cd yolov7
pip install -r requirements.txt
pip install coremltools onnx onnx-simplifier onnxruntime
jupyterlab

pip install openvino-dev==2022.2.0 nncf

python detect.py --weights yolov7.pt --conf 0.25 --img-size
384 --source ./inference/images/bus.jpg

https://github.com/WongKinYiu/yolov7

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
10 Document Number: 783469-1.0

Figure 2. Detection Results of YOLOv7 Model in PyTorch Framework

2.2 Model Optimization

a. Export the YOLOv7 model from PyTorch into ONNX format

Using the end2end parameter in the above exports the full model to ONNX including
post-processing to achieve more performant results. The input image size (img-size)
is changed from 640 (default) to 384 as the latter is found to satisfy the target
performance metrics of the ISV. The resulting ONNX model is saved as yolov7.onnx
in the current working directory.

python export.py --weights yolov7.pt --grid --end2end --
simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35
--img-size 384 384 --max-wh 384

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 11

b. Convert the ONNX model into IR format with FP32 precision using Model
Optimizer

c. Verify the object detection results of the optimized YOLOv7 model in IR format
(yolov7.xml) using the customized script main.py as shown below

mo --input_model yolov7.onnx --data_type FP32 --output_dir
./FP32

import sys
import numpy as np
import random
import cv2
from openvino.runtime import Core
import time

names = ['person', 'bicycle', 'car', 'motorcycle',
'airplane', 'bus', 'train', 'truck', 'boat', 'traffic
light',
'fire hydrant', 'stop sign', 'parking meter', 'bench',
'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',
'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
12 Document Number: 783469-1.0

def letterbox(im, new_shape=(384, 384), color=(114, 114, 114),
 auto=True, scaleup=True, stride=32):

 # Resize and pad image while meeting stride-multiple
 # constraints
 shape = im.shape[:2] # current shape [height, width]
 if isinstance(new_shape, int):
 new_shape = (new_shape, new_shape)

 # Scale ratio (new / old)
 r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
 # only scale down, do not scale up (for better val mAP)
 if not scaleup:
 r = min(r, 1.0)

 # Compute padding
 new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
 # wh padding
 dw, dh = new_shape[1] - new_unpad[0], new_shape[0] -
 new_unpad[1]

 if auto: # minimum rectangle
 # wh padding
 dw, dh = np.mod(dw, stride), np.mod(dh, stride)

 dw /= 2 # divide padding into 2 sides
 dh /= 2
 if shape[::-1] != new_unpad: # resize
 im = cv2.resize(im, new_unpad, interpolation=
 cv2.INTER_LINEAR)
 top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
 left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
 im = cv2.copyMakeBorder(im, top, bottom, left, right,
 cv2.BORDER_CONSTANT, value=color) # add border
 return im, r, (dw, dh)

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 13

def detect_with_ir_model():
 core = Core()
 colors = {name: [random.randint(0, 255) for _ in range(3)] for i,
 name in enumerate(names)}

 model_path = str(sys.argv[1])
 compiled_model = core.compile_model(model_path, 'CPU')
 input_layer_ir = compiled_model.input(0)
 N, C, H, W = input_layer_ir.shape
 iname = input_layer_ir.any_name

 img_path = str(sys.argv[2])
 img = cv2.imread(img_path)
 image = img.copy()
 image, ratio, dwdh = letterbox(image, (H,W), auto=False)
 image = image.transpose((2, 0, 1))
 image = np.expand_dims(image, 0)
 image = np.ascontiguousarray(image)
 im = image.astype(np.float32)
 im /= 255
 inp = {iname: im}

 start = round(time.time() * 1000)
 ov_outputs = compiled_model(inp)[compiled_model.output(0)]
 end = round(time.time() * 1000)

 print(f' Inference time = {end - start} ms')

 ori_images = [img.copy()]

 for i, (batch_id, x0, y0, x1, y1, cls_id, score) in
 enumerate(ov_outputs):
 if (score != 0):
 image = ori_images[int(batch_id)]
 box = np.array([x0, y0, x1, y1])
 box -= np.array(dwdh * 2)
 box /= ratio
 box = box.round().astype(np.int32).tolist()
 print(box)
 cls_id = int(cls_id)
 score = round(float(score), 3)
 name = names[cls_id]
 color = colors[name]
 name += ' ' + str(score)
 cv2.rectangle(image, box[:2], box[2:], color, 2)
 cv2.putText(image, name, (box[0], box[1] - 2),
 cv2.FONT_HERSHEY_SIMPLEX, 0.75, [225, 255, 255],
 thickness=2)
 print(name)

 cv2.imshow("out", ori_images[0])
 cv2.waitKey(0)
if __name__ == '__main__':
 detect_with_ir_model()

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
14 Document Number: 783469-1.0

Run the script main.py to verify the detection results of the optimized model

The inference time of the detection results shown in Figure 3 is 104 ms on CPU in
DUT-1. Thus, the optimized model with FP32 precision reduces the inference time of
the PyTorch model (211 ms) by 51%.

Figure 3. Detection Results of the Optimized YOLOv7 Model with FP32 Precision

A

B

python3 main.py FP32/yolov7.xml inference/images/bus.jpg

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 15

2.3 Model Quantization

NNCF provides a suite of advanced algorithms for inference optimization in
OpenVINO™ with minimal accuracy drop. Post-training Quantization is a quantization
algorithm that doesn't demand retraining of a quantized model. It utilizes a small
subset of the initial dataset to calibrate quantization constants. The post-training
quantization is integrated into NNCF in OpenVINO™ 2022.2.0 and later versions. The
model quantization workflow involves the following steps:

i. Create a Dataset for quantization.

ii. Run nncf.quantize for getting a quantized model with INT8 precision.

iii. Serialize an OpenVINO™ IR model, using the openvino.runtime.serialize function

a. Move to the yolov7 directory containing the utils subdirectory to execute the
following code snippets to create the validation dataloader and transform function.

import nncf
import numpy as np
from collections import namedtuple
import yaml
from utils.datasets import create_dataloader
from utils.general import check_dataset, box_iou, xywh2xyxy,
colorstr

read dataset config
DATA_CONFIG = 'data/coco128.yaml'
with open(DATA_CONFIG) as f:
 data = yaml.load(f, Loader=yaml.SafeLoader)

Dataloader
TASK = 'val' # path to train/val/test images
Option = namedtuple('Options', ['single_cls'])
opt = Option(False)
dataloader = create_dataloader(
 data[TASK], 384, 1, 32, opt, pad=0.5,
 prefix=colorstr(f'{TASK}: ')
)[0]

def prepare_input_tensor(image: np.ndarray):
 input_tensor = image.astype(np.float32) # uint8 to fp16/32
 input_tensor /= 255.0 # 0 - 255 to 0.0 - 1.0

 if input_tensor.ndim == 3:
 input_tensor = np.expand_dims(input_tensor, 0)
 return input_tensor

def transform_fn(data_item):
 img = data_item[0].numpy()
 input_tensor = prepare_input_tensor(img)
 return input_tensor

quantization_dataset = nncf.Dataset(dataloader, transform_fn)

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
16 Document Number: 783469-1.0

Create the config file coco128.yaml with the COCO validation dataset path to create
dataloader using create_dataloader method with the size of 384 instead of its default
value (640).

b. Run the following snippet to create and save the quantized model.

Note: The above mentioned quantization steps are adapted from the OpenVINO
notebook that also includes the validation results of the quantized model.

c. Run the script main.py to verify the detection results of the quantized model

The inference time of the detection results shown in Figure 4 is 34 ms on CPU in
DUT-1. Thus, the quantized model with INT8 precision reduces the inference time of
the raw PyTorch (211 ms) and the optimized FP32 (104 ms) models by 84% and
67%, respectively.

python3 main.py INT8/yolov7.xml inference/images/bus.jpg

from openvino.runtime import Core
from openvino.runtime import serialize

core = Core()
model = core.read_model('FP32/yolov7.xml')

quantized_model = nncf.quantize(model,
quantization_dataset, preset=nncf.QuantizationPreset.MIXED)

serialize(quantized_model, 'INT8_test/yolov7_int8.xml')

https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb

Model Optimization and Quantization

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 17

Figure 4. Detection Results of the Quantized YOLOv7 Model with INT8 Precision

A

B

§

Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7 Model

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
18 Document Number: 783469-1.0

3.0 Accelerating Throughput of Real-Time Use
Case with Quantized YOLOv7 Model

3.1 Use Case

Smart fleet management involves the use of AI-based algorithms for monitoring the
vehicle dashboard camera to ensure driver safety by detecting the use of mobile
phone, spectacle, and seat belt while driving. An ISV is currently running this object
detection use case with the unoptimized YOLOv7 model at 25 FPS on AWS
SageMaker (Nvidia Jetson Nano GPU) at the price of 0.75 USD$/hour. The objective
of the ISV is to achieve the throughput of ≥25 FPS at lower price on Intel platforms
by optimizing the YOLOv7 model using OpenVINOTM. Follow the steps in Section 2.0
to quantize the pre-trained YOLOv7 model provided by the ISV. To verify the
inference results with main.py in Section 2.2c, replace the value of names variable
with the class names used by the ISV.

3.2 Deploying Object Detection on AWS EC2

Refer to the steps in Appendix A to establish the SSH connection and file transfer
from the Windows notebook in Intel network to the remote AWS EC2 instance. The
deployment of object detection based on the optimized YOLOv7 model is simple as
it involves the installation of a very few modules as shown below.

a. Install the required dependencies

b. Create the Python* virtual environment to install OpenVINO™ and OpenCV

c. Verify the detection results of the optimized YOLOv7 model

The step b is used to install OpenVINO™ on the Xeon-based edge device (DUT-3).

sudo apt update

sudo apt install -y python3-pip python3-venv python3-tk

libgl1

python -m venv deploy_venv

source deploy_venv/bin/activate

pip install --upgrade pip

pip install opencv-python openvino==2022.2.0

python3 main.py INT8/yolov7.xml test.jpg

Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7 Model

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 19

3.3 Deploying Object Detection on iBOX-6305E

The OpenVINO™ is installed using docker as it eases the method of executing
inference on iGPU in the Celeron-based edge device (DUT-2).

a. Install Docker

b. Create the OpenVINO™ container using this docker image

c. Verify the detection results of the optimized YOLOv7 model

3.4 Performance Evaluation

The performance of object detection is evaluated on DUT 1-3 with the Python script
main_video.py using the 15-second-long input video containing 394 frames. The
optimized YOLOv7 model with INT8 precision and the input shape of 384x384 is
used in the evaluation. The execution time (in seconds) and throughput (in FPS) are
presented for the three DUTs in Table 4. For the Xeon-based DUT, the performance
is evaluated only on the selected number of CPUs and the execution time is verified
using the following three methods: a) numactl, b) taskset and c) setting the inference
threads in OpenVINO CPU plugin properties. The corresponding commands used in
these methods are shown below:

a) Using numactl

The CPUs (0-3 for 4 CPUs and 0-7 for 8 CPUs) to be used for executing the object
detection are set using the parameter C in numactl.

docker run -it --rm --name openvino_test -v /tmp/.X11-

unix:/tmp/.X11-unix -e DISPLAY="$DISPLAY" -v

/home/ubuntu:/home/openvino --device /dev/dri:/dev/dri --

group-add="$(stat -c "%g" /dev/dri/render*)"

openvino/ubuntu20_dev:2022.2.0

apt update

python3 main.py INT8/yolov7.xml test.jpg

numactl -C 0-3 python3 main_video.py

numactl -C 0-7 python3 main video.py

sudo apt install docker.io

https://hub.docker.com/r/openvino/ubuntu20_dev
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html

Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7 Model

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
20 Document Number: 783469-1.0

b) Using taskset

The CPUs (0-3 for 4 CPUs and 0-7 for 8 CPUs) to be used for executing the object
detection are set using the parameter c in taskset.

c) Setting the inference threads in OpenVINO CPU plugin properties

The number of inference threads is set as 4 (replace 4 with 8 for executing the
inference script on 8 CPUs) in the OpenVNIO CPU plugin properties using the
following steps before compiling the model.

In this method, the Python script is executed in the conventional way as follows:

The values of execution time for the third (Xeon (4 CPUs)) and fourth (Xeon (8 CPUs))
rows in Table 4 are verified using the above three methods.

Table 4. Performance of object detection with the optimized YOLOv7 model in DUT

DUT Inference
Device

Execution

Time* (s)

Throughput

(FPS)

NUC11TNHv5 CPU 15.6 25.3

iBOX-6305E GPU 15.5 25.4

Xeon (4 CPUs) CPU 15.6 25.3

Xeon (8 CPUs) CPU 9.6 41
*The execution time is the time taken to process and execute the inference on the 15-second-long input

video. Its value may vary depending on the software/hardware changes in the test device.

Table 5. Estimated cost savings with the recommended AWS EC2 Instances based on 3rd
Gen Xeon CPU

AWS EC2
Instance

CPUs Memory
(GB)

Price
(USD$/hour)

Cost
Savings*
(%)

m6i.xlarge 4 16 0.192 74

m6i.2xlarge 8 32 0.384 49
*Cost savings (%) is computed relative to the price of AWS SageMaker

taskset -c 0-3 python3 main_video.py

taskset -c 0-7 python3 main video.py

from openvino.runtime import Core

core = Core()

core.set_properties({‘INFERENCE_NUM_THREADS’:4})

python3 main_video.py

Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7 Model

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 21

From Table 4, it is evident that NUC11TNHv5 and iBOX-6305E are suitable for edge
deployment. On the other hand, the 3rd Gen Xeon CPU is suitable for the cloud
deployment and the recommended AWS EC2 instances are m6i.xlarge and
m6i.2xlarge. According to the AWS pricing list, the price of m6i.xlarge and
m6i.2xlarge is 0.192 USD$/hour and 0.384 USD$/hour, respectively. Refer to Table
5 for the specifications of the recommended AWS EC2 instances and the
corresponding cost savings. Therefore, the recommended AWS EC2 instances could
result in 49-74% cost savings compared to AWS SageMaker, while achieving the
target throughput of ≥25 FPS.

§

https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/emr/pricing/

Conclusion

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
22 Document Number: 783469-1.0

4.0 Conclusion

This white paper presents the methods to optimize and quantize the YOLOv7 model
using OpenVINOTM toolkit. This also covers the steps to install OpenVINOTM and
verify the inference execution on the AWS EC2 instance. The real-time object
detection use case of an ISV is demonstrated to achieve the target throughput (≥25
FPS) with the quantized YOLOv7 model on Intel platforms. The performance
evaluation results further reveal that the recommended AWS EC2 instances could
help this ISV to reduce the cloud cost by 49-74% compared to their existing Nvidia
GPU-based AWS SageMaker instance.

§

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 23

5.0 Appendix A

5.1 Converting the Private Key from PEM into PPK Format

In this case, we provided the Intel proxy hostname/port to the ISV to allow us access
to their AWC EC2 instance with the private key in PEM format. We used PuTTY to
connect from the Windows notebook in Intel network to the remote cloud instance.
As PuTTY does not natively support the PEM format, the following steps are used to
convert the private key from PEM into PPK format:

1. From the Start menu, choose All Programs -> PuTTYgen.

2. Under Type of key to generate, choose RSA. If your version of PuTTYgen does not
include this option, choose SSH-2 RSA.

3. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To
locate your .pem file, choose the option to display files of all types.

4. Select your .pem file for the key pair that you specified when you launched your
instance and choose Open. PuTTYgen displays a notice that the .pem file was
successfully imported. Choose OK.

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
24 Document Number: 783469-1.0

5. To save the key in the format that PuTTY can use, choose Save private key.
PuTTYgen displays a warning about saving the key without a passphrase. Choose Yes.

Note: passphrase on a private key is an extra layer of protection. Even if your private key
is discovered, it can't be used without the passphrase. The downside to using a
passphrase is that it makes automation harder because human intervention is
needed to log on to an instance, or to copy files to an instance.

6. Specify the same name for the key that you used for the key pair (for example, key-
pair name) and choose Save. PuTTY automatically adds the .ppk file extension.

Now, the private key is in the correct format for use with PuTTY to connect to the
cloud instance using PuTTY's SSH client.

5.2 Connecting from Intel Network to AWS EC2 Instance

1. From the Start menu, choose All Programs -> PuTTY. Enter the IP address
(provided by ISV) and Port of the AWS EC2 instance in PuTTY.

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 25

2. Select your private key file (.ppk) for authentication in Connection -> SSH -> Auth
-> Credentials

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
26 Document Number: 783469-1.0

3. Select the proxy type as SOCKS 4 in Connection -> Proxy. Enter the preferred Intel
proxy hostname/port (Contact the Intel IT team to get this information and share it
with ISV to allow access to their cloud instance) and click Open to establish the SSH
connection to the remote AWS EC2 instance.

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit

July 2023 White Paper
Document Number: 783469-1.0 27

5.3 Transferring Files from Intel Network to AWS EC2
Instance

1. Download WinSCP from https://winscp.net

2. Enter the IP address and Port of the cloud instance on the login screen and click
Advanced.

3. Select your private key file (PPK) for authentication in SSH -> Authentication

https://winscp.net/

Appendix A

Accelerating Object Detection Throughput in Cloud and Edge Deployments by
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit
White Paper July 2023
28 Document Number: 783469-1.0

4. Select the proxy type as SOCKS4 in Connection -> Proxy and enter the Intel proxy
hostname/port. Then, click OK.

5. Click Login to connect to the cloud instance and transfer files

	Accelerating Object Detection Throughput in Cloud and Edge Deployments by Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit White Paper
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Acronyms
	1.2 Reference Documents

	2.0 Model Optimization and Quantization
	2.1 Prerequisites
	2.2 Model Optimization
	2.3 Model Quantization

	3.0 Accelerating Throughput of Real-Time Use Case with Quantized YOLOv7 Model
	3.1 Use Case
	3.2 Deploying Object Detection on AWS EC2
	3.3 Deploying Object Detection on iBOX-6305E
	3.4 Performance Evaluation

	4.0 Conclusion
	5.0 Appendix A
	5.1 Converting the Private Key from PEM into PPK Format
	5.2 Connecting from Intel Network to AWS EC2 Instance
	5.3 Transferring Files from Intel Network to AWS EC2 Instance

